Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Farah Nadhifa
"Bank berperan penting dalam sistem perekonomian karena memberikan kontribusi yang signifikan melalui fasilitasi kegiatan usaha. Oleh karena itu, kegagalan dari bank bisa mengakibatkan kerusakan pada sistem keuangan tidak hanya pada suatu negara tetapi juga secara global. Meskipun begitu, kebangkrutan tidak terjadi secara tiba-tiba, tapi terdapat indikasi awal yang dapat diketahui dengan cara meneliti laporan keuangan dari sebuah bank secara cermat. Penelitian ini bertujuan untuk mencari model prediksi kebangkrutan bank terbaik untuk memberi peringatan dini kepada regulator agar efek negatif yang diakibatkan oleh kebangkrutan bank pada sistem perekonomian dapat dikurangi atau bahkan dihindari. Akan digunakan metode berupa supervised machine learninghasil modifikasi dari Support Vector Machinesdengan menambahkan fungsi fuzzy membershipyang biasa disebut Fuzzy Support Vector Machines FSVM . Akan digunakan dua jenis kernel, yaitu kernel RBF dan kernel polinomial sebagai pembanding dalam pembentukan model. Machine learningdipilih sebagai metode untuk prediksi kebangkrutan karena hasil yang didapatkan dapat jauh lebih cepat jika dibandingkan dengan menggunakan metode statistika tradisional. Pembentukan model dan penghitungan nilai akurasi prediksi akan dilakukan dengan menggunakan dataset berisikan 65 bank di Turki dari publikasi tahunan ldquo;Banks in Turkey rdquo; yang diterbitkan oleh Banks Association of Turkey BAT . Tiap data dari 65 bank yang dikumpulkan dari tahun 1997 mdash;2004 memiliki informasi berupa 20 rasio keuangan yang dikelompokkan ke dalam enam kelompok fitur berdasarkan sistem penilaian CAMELS. Selain itu, untuk meningkatkan nilai akurasi dari prediksi, akan digunakan seleksi fitur chi-squareuntuk menyaring fitur-fitur yang tidak relevan dari ke-20 fitur dalam dataset.

The bank plays a big role on economic system as they significantly contribute through the facilitation of business. Hence, the collapse of several banks can cause a huge damage to financial systems not only in a country but also globally. Nonetheless, bankruptcy doesn rsquo t happen suddenly, but there are early indications that can be seen by investigating the financial statement of a bank. In this research, we aim to find the best bankruptcy prediction model to give an early warning for regulators so that it can help them to prevent or lessen the negative effects on economic systems. This research will be performing supervised based machine learning that is a modification of SVM by adding fuzzy membership function called Fuzzy Support Vector Machines FSVM . The experiment will also be using kernel RBF and kernel polynomial to construct the model. We chose machine learning for bankruptcy prediction because it can give faster result rather than traditional statistical method. We will be measuring prediction accuracy using a dataset that consists of 65 Turkish banks from the annual publication ldquo Banks in Turkey rdquo issued by the Banks Association of Turkey BAT . Each of the 65 banks that we collected from 1997 mdash 2004 has information of a total of 20 financial ratios with six feature groups based on CAMELS rating system. Furthermore, to improve the accuracy prediction, we also perform chi square feature selection to filter any irrelevant features of total 20 features in our dataset.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melina Dewi Murjadi
"ABSTRAK
Setiap bank pasti memiliki aktivitas pemberian kredit. Bank memiliki beberapa kriteria untuk menentukan apakah kredit akan diberikan atau tidak karena setiap kredit yang diberikan memiliki risiko dimana kredit tersebut tidak dikembalikan. Dengan kata lain, bank perlu menganalisis pengaju kredit sebelum memberikan kredit. Pemberian kredit merupakan salah satu kasus klasifikasi biner. Klasifikasi data pengaju kredit dapat menolong bank dalam memberi pertimbangan apakah pengaju kredit tersebut dapat mengembalikan kredit yang diberikan atau tidak. Support Vector Machines SVM merupakan salah satu teknik klasifikasi biner yang efektif dengan prinsip structural risk minimization. Metode SVM dikembangkan menjadi metode Fuzzy Support Vector Machines FSVM sehingga pengaruh data outlier dalam mencari solusi hyperplane dapat diperkecil. Metode Adaptive Particle Swarm Optimization APSO merupakan metode ekstensi dari Particle Swarm Optimization PSO . Pada metode FSVM berbasis APSO, APSO digunakan dalam memberikan nilai fuzzy dengan mencari titik pusat kelas setiap atribut yang dapat menghasilkan tingkat akurasi terbaik. Dalam penelitian ini, metode FSVM berbasis APSO dapat menghasilkan tingkat akurasi tertinggi dalam setiap pengolahan data. Tingkat akurasi tertinggi yang dicapai pada penelitian ini adalah sebesar 75,67 dengan metode FSVM berbasis APSO menggunakan training data sebesar 70 dan kernel linier.

ABSTRACT
Every bank has loaning activities. Banks have several criteria for determining whether credit will be given or not because every credit loan has a risk that the credit might not be returned. In other words, banks need to analyze the credit applicant before granting the loan. Credit loan is a case of binary classification. The classification from applicant rsquos data might be helpful for the bank in consideration whether the applicant will return the loan or not. Support Vector Machines SVM is a classification technique based on structural risk minimization which is effective for binary classification. This method was developed into Fuzzy Support Vector Machines FSVM , which is able to minimize the influence of outlier in finding the best hyperplane. Adaptive Particle Swarm Optimization APSO is an extension of Particle Swarm Optimization PSO. In APSO based FSVM, APSO is used to determine the fuzzy score by finding the class center of each attribute that may give the highest accuracy. In this paper, APSO based FSVM can give the highest accuracy for each process. The highest rate of accuracy is 75,67, which used APSO based FSVM with 70 of training data and linear kernel."
[, ]: 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Putu Ayu Audia Ariantari
"Kestabilan perekonomian suatu negara ditentukan oleh sektor-sektor ekonomi di dalamnya. Salah satu sektor yang sedang berkontribusi secara signifikan di Indonesia adalah asuransi. Industri Asuransi sedang mengalami perluasan pada beberapa tahun terakhir. Seiring dengan perluasan tersebut, terdapat kompetisi antar perusahaan asuransi di Indonesia. Kompetisi ini menuntut perusahaan asuransi untuk lebih cerdik dalam mengungguli pasar. Tetapi, perlu diperhatikan bahwa perusahaan asuransi harus selalu sadar akan tingkat risiko yang harus ditanggungnya. Sehingga perlunya dilakukan penelitian tentang kemungkinan klaim di masa depan dari perusahaan asuransi.
Dalam penelitian ini, akan difokuskan pada sektor asuransi kendaraan bermotor di Indonesia. Model yang diajukan pada penelitian ini adalah suatu machine learning yang biasa digunakan untuk masalah klasifikasi dan prediksi. Metode klasifikasi yang digunakan adalah Support Vector Machines dan Fuzzy Support Vector Machines. Penelitian ini menggunakan data historis polis dari suatu perusahaan asuransi umum di Indonesia. Data historis polis ini terdiri dari 7.373 data dengan periode waktu berlaku polis adalah setahun terhitung dari Januari 2015 sampai dengan Desember 2016. Setelah itu, dibandingkan hasil dari kedua metode tersebut untuk mendapatkan hasil yang terbaik. Penggunaan data historis polis dari suatu asuransi umum di Indonesia ini menunjukkan bahwa Support Vector Machines menghasilkan tingkat akurasi rata rata 100 dalam klasifikasi dua kelas yaitu klaim dan tidak klaim. Memang waktu yang dibutuhkan relatif lama dalam mengklasifikasi data yaitu 4673,33 detik. Kemudian dibandingkan hasil olahan dengan klasifikasi Fuzzy Support Vector Machines dengan komposisi 80 training data dan akurasi yang dihasilkan adalah 99,23 .

Economics stability of a country is depending on each economics sector of the country. One of the most sector that give a significant contribution is Insurance. Insurance Industry is rapidly grow in recent years. As it grows bigger, there is exist one simple core that indeed affected Insurance Industry in Indonesia which is a competition. The competition is to force one Insurance company to be sharper to win the market. On the other hand, one should realize that Insurance company must be well aware of the immerging risk rate. Insurance company indeed should be prepared for the probability of high indemnities. It leads to the point that a study about future claim should be done for this matter.
In this study, one will focus on Automobile Insurance in Indonesia. The proposed model for this matter is using the mighty machine learning that is well known for classification and prediction problems. The classification methods that one will use are Support Vector Machines and Fuzzy Support Vector Machines. The aims of this study are to compare those two classification methods. This study also use a comprehensive historical policy data from a General Insurance company in Indonesia. This data consists of 7373 data with a one year policy starting from January 2015 until December 2016. One will has to compare those two methods to gain the best result. The used of this historical policy data will show that a classification using Support Vector Machines will result in 100 accuracy for binary classification, in this case will be yes or no claim within one year period. It is indeed takes longer to classify using this method. It takes about 4673,33 seconds. Then, one will compare the result with the other method which is Fuzzy Support Vector Machines with the used of 80 training data. It shows that the accuracy is 99,23 .
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salam Fadillah Alzah
"Penelitian ini menganalisis corporate governance yang diukur dengan jumlah dewan komisaris, presentase komisaris independen, komite audit, dan kepemilikan institusional, dengan variabel kontrol ukuran perusahaan dan leverage, dan pengaruhnya terhadap industri asuransi di Indonesia yang terdaftar di Bursa Efek Indonesia dalam periode 2008-2016. Penelitian ini adalah penelitian kuantitatif dengan 8 sampel perusahaan asuransi yang ditentukan berdasarkan metode purposive sampling. Metode yang digunakan adalah regresi linear berganda. Hasil penelitian ini menunjukkan bahwa corporate governance belum memberikan pengaruh terhadap kinerja perusahaan asuransi di Indonesia.
Hasil regresi pada ROA, jumlah dewan komisaris dan leverage berpengaruh negatif terhadap ROA, sedangkan presentase komisaris independen, komite audit, kepemilikan institusional, dan ukuran perusahaan tidak memberi pengaruh. Regresi pada Tobin'sQ, komite audit dan ukuran perusahaan yang berpengaruh negatif, sedangkan jumlah dewan komisaris, presentase komisaris independen, kepemilikan institusional, dan leverage tidak memberikan pengaruh.

This study analyzes the effect of corporate governance as measured by the number of boards of commissioners, the percentage of independent commissioners, audit committees, and institutional ownership, with firm size and leverage as control variables, on the performance of the insurance industry in Indonesia listed on the Indonesia Stock Exchange in the period 2008 2016. This research is quantitative research with 8 sample of the insurance company which determined by purposive sampling method. The method used is multiple linear regression.
The results of this study indicate that corporate governance has not affected the performance of insurance companies in Indonesia. Regression results on ROA, the number of boards of commissioners and leverage have a negative effect on ROA, while the percentage of independent commissioners, audit committee, institutional ownership, and firm size have no effect. Regressions on Tobin 39 sQ, audit committees, and firm size are negatively affected, while the number of boards of commissioners, the percentage of independent commissioners, institutional ownership, and leverage have no effect."
Depok: Universitas Indonesia, 2018
T51624
UI - Tesis Membership  Universitas Indonesia Library
cover
Inry Raudiatul Fauzi
"Kanker merupakan penyakit penyebab kematian terbesar kedua di dunia. Menurut prediksi WHO 2015 kasus kematian akibat kanker akan meningkat menjadi 21,6 juta kasus pada tahun 2030. Salah satu usaha untuk mengurangi penyebaran kanker dengan menggunakan machine learning adalah melakukan pendeteksian jenis kanker dengan memanfaatkan microarray data. Pada umumnya, microarray data kanker terdiri dari banyak fitur. Namun, tidak semua fitur yang ada pada data kanker memiliki informasi penting. Oleh karena itu, fitur-fitur tersebut akan diekstraksi menggunakan metode Principal Component Analysis PCA. Kemudian dipilih fitur-fitur yang paling informatif dari data hasil ekstraksi PCA. Fitur-fitur terpilih dari data hasil ekstraksi akan dibentuk dalam data baru. Data sebelum dan data setelah dilakukan pemilihan fitur akan diklasifikasi menggunakan metode Fuzzy Support Vector Machines FSVM. Akurasi dari proses klasifikasi dua tahap tersebut akan dibandingkan. Pendekatan one versus one akan digunakan pada masalah klasifikasi multikelas data kanker leukemia. Dengan pendekatan tersebut akan terbentuk sebanyak k k-1 /2 masalah dua kelas, di mana k menunjukkan jumlah kelas. Hasilnya, tanpa melakukan pemilihan fitur, diperoleh akurasi tertinggi sebesar 87.69. Setelah dilakukan pemilihan fitur, diperoleh akurasi terbaik dengan menggunakan 60 fitur dengan akurasi sebesar 96,92.

Cancer is the second leading cause of death globally. According to WHO prediction 2015 cases of cancer deaths will increase become 21.6 million cases by 2030. One of the effort to reduce the spread of cancer by using machine learning is to detect the types of cancer. We can use microarray data to detect the types of cancer. In general, microarray cancer data consist of many features. However, not all features in cancer data have important information. Therefore, these features will be extracted by using Principal Component Analysis PCA method. Then, we select the most features who have important information of data extraction. The selected features of extracted data will be formed in the new data. Data, before and after selection will be classified using Fuzzy Support Vector Machines FSVM method. The accuracy of the classification process will be compared. The one versus one approach will be used on multiclass leukemia cancer data. This approach will formed the multiclass problem into k k 1 2 binary class problems, where k denotes the number of classes. The results, without doing feature selection, the highest accuracy is 87.69. After doing feature selection, the best accuracy is obtained by using 60 features with the accuracy is 96.92.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library