Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Yenni
Depok: Fakultas Teknik Universitas Indonesia, 1998
S50823
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novrikasari
"[ABSTRAK
Konsep penanggulangan bencana saat ini adalah paradigma pengurangan risiko.Setiap individu, masyarakat di daerah diperkenalkan dengan berbagai ancaman (hazards) dan kerentanan (vulnerability) yang dimiliki, serta meningkatkan kemampuan (capacity) masyarakat dalam menghadapi setiap ancaman. Sehingga studi ini bertujuan mengkaji model pengendalian risiko dispersi gas amonia.
Disain studi adalah cross sectional. Analisis model pengukuran dan struktural menggunakan comfirmatory factor analysis (CFA). Nilai validitas dan reliabilitas hasil uji kesesuaian/Goodness of Fit (GOF) adalah good fit untuk konstruk dari model.Kuesioner disebarkan secara cluster, terdapat 626 responden (area risiko 0- 2600 meter). Dibagi menjadi 293 responden pada zona dalam (area risiko 0-1300 meter) dan 333 responden zona luar (area risiko >1300-2600 meter).
Model pengukuran menghasilkan 5 variabel eksogen (kondisi lingkungan, sosial, ekonomi, biologi dan kapasitas) yang saling berhubungan langsung membentuk variabel endogen risiko dispersi gas amonia. Faktor kondisi lingkungan terdiri dari zona bahaya dan jarak rumah ke jalan raya.Faktor sosial yaitu pelatihan dan pekerjaan.Faktor ekonomi yaitu kecukupan akomodasi, pendapatan, asuransi dan pendidikan.Faktor kapasitas yaitu pengetahuan tentang bahaya, pengetahuan tentang peringatan dini, pengetahuan tentang evakuasi dan perilaku tanggap darurat. Faktor biologi yaitu usia> 65 tahun, anggota keluarga dengan penyakit kronis dan anggota keluarga berkebutuhan khusus. Risiko dispersi gas amonia pada rumah tangga area risiko 0-2600 meter ada pengaruh kontribusi dari 47% faktor sosial, 37% faktor ekonomi, 29% faktor kapasitas dan 9% faktor kondisi. Risiko dispersi gas amonia zona dalam (area risiko 0-1300 meter ada pengaruh kontribusi darifaktor sosialberkontribusi 63%, faktor ekonomi 64%, faktor kapasitas 57% dan biologi 2,3%. Selanjutnya risiko dispersi gas amonia pada rumah tangga area risiko >1300-2600 meter ada pengaruh kontribusi dari 2 (dua) faktor yaitu faktor kondisi 99% dan faktor kapasitas (12%).
Penelitian ini menyimpulkan model risiko dispersi gas amonia dalam penelitian ini menunjukkan faktor yang berkontribusi membentuk risiko dispersi gas amonia sehingga dapat menjadi upaya pengendalian dengan memperhatikan faktor yang berkontribusi tersebut. Rekomendasi kepadaPemerintah Daerah untuk menetapkan peta rawan bencana menjadi peraturan daerah yang berkekuatan hukum dan pemberlakuan peraturan tentang tata ruang (daerah pemukiman), standar keselamatan (pemantauan penggunaan teknologi) dan penerapan sanksi terhadap pelanggar. Mengkoordinasi antara Satuan Kerja Perangkat Daerah
ix
(SKPD), Dinas Pemadam Kebakaran/ Badan Penanggulangan Bencana Daerah (BPBD), dan dinas terkait untuk evakuasi (akomodasi), kelancaran akses jalur evakuasi. Menyelenggarakan sosialisasi, pendidikan dan pelatihan mengenai kesiapsiagaan bencana dispersi gas amonia kepada masyarakat melalui perkumpulan/organisasi di masyarakat. Rekomendasi kepada perusahaan antara lain : Membuat peta rawan bencana dan Emergency Respon Plan (ERP) baik internal maupun eksternal; Melakukan perawatan dengan inspeksi rutin berbasis risiko untuk memastikan kehandalan peralatan sistem pendingin amonia; Semua pekerja dalam operasional tangki sistem pendingin amonia selalu dilakukan dengan mengikuti Standard Operating Procedure (SOP), peraturan keselamatan, audit keselamatan; Mengingat sifat gas amonia yang tidak berwarna tetapi sangat beracun serta luasan area risiko yang berdampak perlu adanya sensor untuk gas amonia sebagai alat ukur dan monitoring. Selanjutnya rekomendasi kepada masyarakat agar mengembangkan dan berperan aktif dalam desa siaga bencana (kesiapsiagaan bencana berbasis masyarakat);

ABSTRACT
The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).;The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness)., The concept of disaster management nowadays is risk reductionsparadigm. Each individual, residents are introduced to various threats and vulnerabilities owned, as well as increased capacity in facing any threats. This study aims to assess the risk control model of ammonia gas dispersion.
The designstudy was cross sectional using confirmatory factor analysis (CFA) as the measurement model and structural analysis. Validity and reliability value for Goodness of Fit (GOF) test is good fit for construct of the model. Questionnaires were distributed by cluster, there were626 respondents (risk area 0-2600 meters) divided into 293 and 333 respondents in the inner and outer zones (risk area >1300-2600 meters).
Measurement model produces 5 directly interconnected exogenous variables (environmental, social, economic, biological and capacity condition) to form an endogenous variable risk of ammonia gas dispersion. Environmental conditions consist of danger zone and distance from home to road. Social factors consist of training and job. Economic factors consist of accommodation, salary, assurance and education. Capacity factors consist of hazard knowledge, early warning knowledge, evacuation knowledge and emergency response behavior.Biological factors consist of age >65 year old and family member with chronic disease and disability. The model goodness of fit test result was compatible for RMSEA, CFI, IFI, CN, SRMR, GFI and AGFI. It indicates that the models can describe the ammonia gas dispersion riskformed factors. Social factorscontribute61% of thetotalrisk ofammoniagasdispersion, related toeconomic factors(42%), capacityfactor(36%)andconditionfactor(5.7%). Riskdispersionof ammoniagasin thezoneindicateseconomic factorsaccounted for64% of thetotalrisk ofammoniagas
dispersionincludingsocial(63%), capacity(57%) andbiology(2.3%). While theouterzone ofthe conditionfactor(99%) to be importantin the risk ofammoniagasdispersionandcapacity factor(1%).
This study concludes dispersion risk modelsof ammonia gas in this study indicate risk factors that contribute to form ammonia gas dispersion to be a control effort by noticing the factors that contribute as following; recommend to the Regional Government to establish hazard maps into a legally binding regional regulations and enforcement of regulations on spatial (residential areas), safety standards (monitoring the use of technology) and the imposition of sanctions against offenders. Coordinate between work units (SKPD), Fire Department / Agency for Disaster Management (BPBD), and related agencies for evacuation (accommodation), the smooth evacuation route access. Organize socialization,
xi
education and training on disaster preparedness ammonia gas dispersion to the public through associations / organizations in the community. Recommendations to the company include: Creating a hazard map and Emergency Response Plan (ERP) both internally and externally; Perform routine maintenance with risk- based inspections to ensure equipment reliability ammonia refrigeration systems; All workers in the operational tank ammonia cooling system is always done by following the Standard Operating Procedure (SOP), safety rules, safety audits; Given the nature of ammonia gas that is colorless but highly toxic as well as the extent of the risk areas that impact the need for a sensor for ammonia gas as a means of measuring and monitoring. Further recommendations to the community are to develop and play an active role in disaster preparedness village (community-based disaster preparedness).]"
2015
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Baiq Hijratul Hasanah
"ABSTRACT
Kesegaran merupakan faktor penting penentu kualitas daging ayam. Peningkatan jumlah TVB-N Total Volatile Base-Nitrogen pada daging ayam selama penyimpanan menunjukkan penurunan mutu. Senyawa volatil seperti trimethylamine TMA , amonia NH3, dan dimethylamine DMA bertanggung jawab atas bau busuk dan perubahan warna daging. TVB-N bersifat mudah menguap dan sebagian besar terdiri atas amonia. Pada penelitian ini indikator gas amonia dikembangkan menggunakan PVA polyvinyl alcohol, kertas, dan zat warna alami dari ekstrak beras ketan hitam. PVA dan kertas digunakan sebagai matriks/substrat untuk meimobilisasi zat warna alami yang mengandung antosianin. Indikator ini menggunakan metode gasochromic yang melibatkan reaksi reduksi oksidasi di dalamnya. Spektrum larutan ekstrak antosianin menunjukkan variasi warna untuk nilai pH yang berbeda pH 2-13 . Warna larutan ekstrak berubah dari warna merah pada pH asam menjadi kuning pada pH basa. Spektrum UV-vis larutan ekstrak terukur pada panjang gelombang 449-662 nm. Preparasi label dilakukan menggunakan metode simultan casting dan imersi. Label PVA, label kertas Whatman dan kertas Kalkir digunakan sebagai indikator gas amonia. Label diuji terhadap gas amonia dengan variasi konsentrasi 0,005 ; 0,025 ; 0,05 ; 0,1 ; dan 0,5. Perubahan warna label akibat interaksi dengan gas amonia dianalisis menggunakan Scanner dengan bantuan software imageJ. Stabilitas warna label diuji terhadap temperatur, kelembapan relatif RH , dan cahaya. Uji aplikasi dilakukan untuk melihat potensi label sebagai indikator untuk memonitor kesegaran daging ayam. Indikator gas amonia menunjukkan perubahan warna dari merah menuju ungu untuk pH 2 akibat pembusukan daging ayam. Sedangkan label pH 7 tidak menunjukkan perubahan warna yang dapat dilihat secara visual. Oleh karena itu label indikator ini dapat dikembangkan sebagai label gasochromic untuk memonitor kesegaran daging ayam.

ABSTRACT
Freshness is an important factor determining the quality of chicken meat. TVB N Total Volatile Base Nitrogen in chicken meat during storage showed a quality degradation. Volatiles amines, such as trimethylamine TMA, ammonia NH3, and dimethylamine DMA responsible for the chicken meat odour and discoloration. TVB N is volatile and mainly consist of ammonia. In this research, an ammonia gas indicator was developed using PVA polyvinyl alcohol, papers, and natural dyes from black glutinous rice extract. Both PVA and paper are solid matrices used to immobilize natural dyes, anthocyanin. This indicator uses a gasochromic method involving redox reaction. Spectrum of anthocyanin extract solutions showed color variations to different pH values pH 2 13 . Color change from red at acidic pH to yellow at basic pH. The UV vis spectrum of anthocyanin extract solutions measured at the maximum absorption peak 449 662 nm. Label preparations was conducted using simultaneous casting and immersion methods. PVA labels, Whatman, and Kalkir paper labels are used as ammonia gas indicator. Labels were tested to different ammonia exposure levels 0,005 0,025 0,05 0,1 dan 0,5. Color change of labels due to interaction with ammonia gas were analyzed using Scanner with imageJ software. Color stability were tested to temperature, relative humidity RH, and light. A test was conducted for potential use of ammonia gas indicator to monitor chicken meat freshness. The label indicator showed color change from red to violet at pH 2 due to chicken meat spoilage. While labels at pH 7 has no visible color changes. This indicator used a gasochromic label for chicken meat freshness monitoring."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosyana Lieyanty
"TPA Cipayung memiliki sistem pengolahan sampah berupa sistem penimbunan sampah atau dsebut juga dengan Sanitary Landfill. Sampah yang tertimbun akan menghasilkan berbagai gas berbahaya, salah satunya ialah gas Amonia NH3. Tidak tersedianya instalasi gas NH3 di TPA Cipayung dapat menyebabkan polusi udara di TPA dan dapat menyebabkan berbagai dampak kesehatan seperti sesak napas, mual, iritasi mata, iritasi kulit, dsb jika terpapar pada para pekerja pemulung.
Tujuan penelitian ini adalah mengetahui risiko kesehatan lingkungan akibat pajanan gas NH3 kepada pekerja pemulung di TPA Cipayung. Penelitian ini menggunakan desain analisis kesehatan lingkungan dengan populasi sampel adalah seluruh pemulung yang bekerja di TPA Cipayung yang telah bekerja minimal 1 tahun dengan batas usia 18-55 tahun. Total sampel yang didapatkan ialah 87 responden dan 3 sampel udara yang diambil dari 3 titik berbeda dengan jarak masing-masing titik sejauh 50 m.
Hasil konsentrasi tertinggi yaitu 0,122 mg/m3 dan konsentrasi terendah yaitu 0,053 mg/m3 dengan perhitungan konsentrasi rata-rata sebesar 0,082 mg/m3. Berdasarkan perhitungan risiko yang diterima saat ini real time , didapatkan hasil RQ < 1. Demikian pula hasil estimasi risiko yang diterima seumur hidup life span, juga didapatkan RQ < 1. Karena konsentrasi NH3 di TPA Cipayung masih dalam kategori aman, maka tidak diperlukan manajemen risiko.

TPA Cipayung has a waste processing system in the form of garbage dumping system or also called Sanitary Landfill. The accumulated waste will produce various harmful gases, one of which is Ammonia gas NH3 . The unavailability of NH3 gas installations in TPA Cipayung can cause air pollution in the landfill and may cause various health effects such as shortness of breath, nausea, eye irritation, skin irritation, etc. if exposed to scavengers.
The purpose of this research is to know the environmental health risk due to NH3 gas exposure to scavengers in TPA Cipayung. This research uses environmental health analysis design with sample population is all scavengers who work in TPA Cipayung who have worked at least 1 year with age limit 18 55 years. The total samples obtained were 87 respondents and 3 air samples taken from 3 different points with distance of each point as far as 50 m.
The highest concentration result was 0.122 mg m3 and the lowest concentration was 0.053 mg m3 with the calculation of average concentration of 0.082 mg m3. Based on the calculation of the risk received at this time real time , the results obtained RQ.
"
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library