Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Rizal Adi Saputra
"Macular edema is a kind of human sight disease as a result of advanced stage of diabetic retinopathy. It affects the central vision of patients and in severe cases lead to blindness. However, it is still difficult to diagnose the grade of macular edema quickly and accurately even by the medical doctor's skill. This paper proposes a new method to classify fundus images of diabetics by combining Self-Organizing Maps (SOM) and Generalized Vector Quantization (GLVQ) that will produce optimal weight in grading macular edema disease class. The proposed method consists of two learning phases. In the first phase, SOM is used to obtain the optimal weight based on dataset and random weight input. The second phase, GLVQ is used as main method to train data based on optimal weight gained from SOM. Final weights from GLVQ are used in fundus image classification. Experimental result shows that the proposed method is good for classification, with accuracy, sensitivity, and specificity at 80%, 100%, and 60%, respectively."
Surabaya: Faculty of Information and Technology, Department of Informatics Institut Teknologi Sepuluh Nopember, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Nanda Kurniawan
"In this research, Parrot AR.Drone as an Unmanned Aerial Vehicle (UAV) was used to track an object from above. Development of this system utilized some functions from OpenCV library and Robot Operating System (ROS). Techniques that were implemented in the system are image processing al-gorithm (Centroid-Contour Distance (CCD)), feature extraction algorithm (Principal Component Ana-lysis (PCA)) and an artificial neural network algorithm (Generalized Learning Vector Quantization (GLVQ)). The final result of this research is a program for AR.Drone to track a moving object on the floor in fast response time that is under 1 second.
Pada penelitian ini, Parrot AR.Drone digunakan sebagai pesawat tanpa awak untuk menjejaki sebuah objek dari atas. Pengembangan sistem ini memanfaatkan beberapa fungsi dari pustaka OpenCV dan Robot Operating System (ROS). Teknik-teknik yang diimplementasikan pada sistem yang dikem-bangkan adalah algoritma pengolahan citra (Centroid-Contour Distance (CCD)), algoritma ekstraksi fitur (Principal Component Analysis (PCA)), dan algoritma jaringan syaraf tiruan (Generalized Lear-ning Vector Quantization (GLVQ)). Hasil akhir dari penelitian ini adalah sebuah program untuk AR. Drone yang berfungsi untuk menjejaki sebuah objek bergerak di lantai dengan respon waktu yang ce-pat dibawah satu detik."
Fakultas Ilmu Komputer Universitas Indonesia, 2014
PDF
Artikel Jurnal  Universitas Indonesia Library
cover
Diane Fitria
"Sistem deteksi aritmia otomatis sangat diperlukan karena keterbatsan dokter spesialis jantung di Indinesia. Paper ini akan mendiskusikan secara lengkap tentang studi dan implementasi dari sistem tersebut. Kami menggunakan berbagai macam metode pengolahan sinyal untuk mengenali aritmia berdasarkan sinyal ekg. Bagian utama dari sistem adalah klasifikasi. Kami menggukanakn jaringan syaraf tiruan berbasis LVQ yang meliputi LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ dan FNGLVQ. Hasil eksperimen menunjukkan untuk data non round robin tingkat akurasi sistem mencapai 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, dan 74.62%d berturut-turut untuk FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ dan LVQ1. Sedangkan untuk data round robin tingkat akurasi sistem mencapai 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, dan 74.78% berturut-turut untuk GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ dan LVQ1.

An automatic Arrythmias detection system is urgently required due to small number of cardiologits in Indonesia. This paper discusses only about the study and implementation of the system. We use several kinds of signal processing methods to recognize arrythmias from ecg signal. The core of the system is classification. Our LVQ based artificial neural network classifiers based on LVQ, which includes LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ and FNGLVQ. Experiment result show that for non round robin dataset, the system could reach accuracy of 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, and 74.62% respectively for FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ and LVQ1. Whereas for round robin dataset, system reached accuracy of 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, and 74.78% respectively for GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ and LVQ1."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library