Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 1 dokumen yang sesuai dengan query
cover
Malvin Augurius
"Misalkan 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) dengan 𝑉(𝐺) adalah himpunan tak kosong simpul dan 𝐸(𝐺) adalah himpunan busur. Banyaknya simpul di 𝐺 disebut order dari 𝐺. Pelabelan tak teratur modular pada graf 𝐺 adalah pelabelan busur 𝜑: 𝐸(𝐺) → {1,2, … , 𝑘} dan 𝑘 ∈ 𝑍^+ sedemikian sehingga terdapat fungsi bobot bijektif 𝜎: 𝑉(𝐺) → 𝑍_𝑛 dimana 𝑍_𝑛 adalah grup bilangan bulat modulo 𝑛. Bobot modular pada 𝑢 ∈ 𝑉(𝐺) didefinisikan dengan 𝜎(𝑢) = 𝑤𝑡_𝜓(𝑢) = ∑𝑣∈𝑁(𝑢) 𝜓(𝑢𝑣) dengan 𝑁(𝑢) adalah himpunan tetangga dari simpul 𝑢. Nilai minimum 𝑘 dimana graf 𝐺 memiliki pelabelan tak teratur modular disebut kekuatan tak teratur modular dari graf 𝐺 dinotasikan sebagai 𝑚𝑠(𝐺) Graf mahkota yang dinotasikan dengan 𝐻_(𝑚,𝑚) adalah modifikasi dari graf bipartit. Pada penelitian ini diperoleh graf mahkota 𝐻_(𝑚,𝑚) memiliki kekuatan tak teratur modular bernilai 4 untuk 𝑚 genap dan bernilai ∞ untuk 𝑚 ganjil.
......Suppose 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) where 𝑉(𝐺) is the non-empty set of vertices and 𝐸(𝐺) is set of edges. The number of vertices in 𝐺 is called the order of 𝐺. Modular irregular labeling on a graph 𝐺 is an edge labeling 𝜑: 𝐸(𝐺) → {1,2, … , 𝑘} and 𝑘 ∈ 𝑍^+ such that there exists a bijective weight function 𝜎: 𝑉(𝐺) → 𝑍_𝑛 where 𝑍_𝑛 is an integer group of modulo 𝑛. The modular weight on 𝑢 ∈ 𝑉(𝐺) is defined by 𝜎(𝑢) = 𝑤𝑡_𝜑(𝑢) = ∑𝑣∈𝑁(𝑢) 𝜓(𝑢𝑣) where 𝑁(𝑢) is set of neighbors of vertex 𝑢. The minimum value of 𝑘 for which a graph 𝐺 has a modular irregular labeling is called the modular irregularity strength of graph 𝐺 denoted as 𝑚𝑠(𝐺). Crown graph denoted by 𝐻_(𝑚,𝑚) is a modification of the bipartite graph. In this research, it is obtained that the crown graph 𝐻_(𝑚,𝑚) has a modular irregularity strength of 4 for even 𝑚 and ∞ for odd 𝑚."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library