Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Randy Pangestu Kuswana
"ABSTRAK
Pose estimasi wajah atau head pose estimator merupakan salah satu dari parameter yang penting dalam proses identifikasi wajah dalam bentuk citra muka tiga dimensi. Dikarenakan performanya yang sangat baik, deep learning menggunakan jaringan saraf konvolusi sering digunakan sebagai estimator dari pose wajah. Namun dibalik performanya yang kuat, jaringan saraf konvolusi masih rentan terhadap derau sehingga menyebabkan performa akan turun secara signifikan. Selain itu, performa dari CNN juga tergantung pada kombinasi dari hyper-parameter yang dipilih. Pengembangan CNN yang pesat membuat dikembangkannya beberapa arsitektur dengan setiap arsitektur memiliki performanya tersendiri. Dalam penelitian ini akan dibuat dua jenis estimator pose kepala yang pertama menggunakan arsitektur modifikasi dari LeNet-5 dan yang kedua menggunakan arsitektur modifikasi dari AlexNet. Pada arsitektur LeNet-5 akan dilakukan percobaan terhadap berbagai hyper-parameter tipe pooling dan fungsi aktivasi, untuk mengetahui pengaruhnya terhadap derau gaussian, salt-pepper, dan speckle. Selain itu dua jenis estimator yang dibuat akan dibandingkan juga hasilnya untuk mengetahui performa dari Arsitektur AlexNet Modified yang dibuat terhadap citra dengan noise. Dari hasil percobaan didapatkan nilai performa AlexNet yang memiliki akurasi lebih bagus dibandingkan dengan LeNet-5, baik pada data dengan derau atau pada data tanpa derau.

ABSTRACT
Head pose estimation is one of the important parameter for determination of known face from its three dimensional face images. Due to its superiority, Convolutional Neural Network CNN has been used as a head pose estimator, and has been under a rapid growth in the recent years, with the growth resulting in many architecture were developed to solve a particular task. However, most of the CNN rsquo s performance were significantly dropped when the input face images was exposed to noises. In this research, we will develope two sistem with each of them using a different Architecture, LeNet 5 and AlexNet. Moreover, by using an LeNet 5 system that we built, we test the effect on hyper parameter choices of pooling layer and activation function. It is due, to understand the their effect on a gaussian noise, salt pepper, and speckle noise. After testing the hyper parameter effect on degraded image, we compare the performance of modified LeNet 5 and modified AlexNet. Result of the experiments shows that the modified AlexNet has a better performance on dealing with either normal or degraded images. "
2018
T51433
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Adi Nugroho
"Pengolahan citra telah mengalami banyak perkembangan dan semakin umum diaplikasikan. Salah satu pengaplikasiannya rekognisi wajah tiga dimensi, yang juga melibatkan estimasi pose wajah. Salah satu metode rekognisi citra, yaitu jaringan saraf konvolusi, berpotensi menjadi dasar dari sistem estimasi pose wajah. Operasi konvolusi diharapkan mampu meminimalisir pengaruh distorsi dan disorientasi objek, serta mampu mengefisiensikan parameter yang dibutuhkan. Namun, permasalahan noise atau derau belum secara eksplisit terselesaikan oleh jaringan saraf tiruan konvolusi.
Penelitian ini bertujuan memasukkan fitur sistem fuzzy yang efektif mengelola data samar ke dalam jaringan saraf tiruan konvolusi yang diaplikasikan untuk estimasi pose wajah. Perancangan dimulai dari menjabarkan fungsi masing-masing lapisan jaringan saraf tiruan, menjabarkan operasi-operasi aritmatika pada bilangan fuzzy, dan mencoba menggantikan neuron crisp pada jaringan saraf tiruan konvolusi umum menjadi neuron fuzzy, dan mengaplikasikannya untuk mengestimasi pose wajah. Sistem yang sudah dibangun kemudian diujicoba pada dataset yang dimiliki Departemen Teknik Elektro UI dan dibandingkan dengan CNN-crisp yang memiliki arsitektur serupa dengan parameter pembelajaran yang sama.
Hasil didapat menunjukkan sistem konvolusi fuzzy mencapai nilai kesalahan estimasi pose lebih rendah dari konvolusi crisp pada data berderau tanpa merubah hasil estimasi pada data tidak berderau.
......
Image processing has undergone many developments and is increasingly commonly applied. From limited two-dimensional recogniton, facial recognition has now being developed to be able to recognise three-dimensional features. This ability involves process of face pose estimation. One method of image recognition, the convolution neural network, has the potential to become the basis of the face pose estimation system. Convolution operation is expected to minimize the effect of distortion and disorientation of the object, and able to efficiently reduce the required parameters. However, the image noise problem has not been explicitly resolved by convolution neural networks.
This study aims to include features of a fuzzy system that effectively manages fuzzy data into convolutional neural networks applied to head pose estimation. The design begins with describing the function of each layer of artificial neural networks, describing arithmetic operations on fuzzy numbers, and attempting to replace crisp neurons in convolution layer of convolutional neural into fuzzy neurons, and applying them to estimate head poses. The estimator system is then tested on a dataset owned by the Department of Electrical Engineering UI and compared with CNN-crisp that has a similar architecture with the same learning parameters.
The results show that the fuzzy convolution system reaches less error of pose estimation value compared to the crisp convolution system, without changing the estimation value of image without noises."
Depok: Fakultas Teknik Universitas Indonesia, 2017
T49040
UI - Tesis Membership  Universitas Indonesia Library