Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 13 dokumen yang sesuai dengan query
cover
Ilham Faturachman
"ABSTRAK
Bahan bakar fosil yang menipis menjadi permasalahan energi saat ini. Hal tersebut meningkatkan pengembangan sumber energi terbarukan yang berkelanjutan dan bersifat ramah lingkungan. Bio-oil merupakan sumber energi berkelanjutan yang dihasilkan dari proses fast pyrolysis material organik serta material lain yang berpotensi sebagai sumber bio-oil, seperti senyawa guaiacol yang berasal dari bio-polimer lignin. Pada penelitian ini senyawa guaiacol digunakan sebagai senyawa model bio-oil, yang dikonversi melalui reaksi hidrodeoksigenasi HDO dengan metode catalytic transfer hydrogen untuk mengurangi kandungan oksigen serta mereduksi ikatan rangkap ? pada cincin aromatisnya. Reaksi HDO pada senyawa guaiacol dilakukan dengan menggunakan katalis heterogen Pd/TiO2 dan katalis bimetal M-Pd/TiO2 Co, Mo, dan Ni, serta pelarut 2-propanol sebagai sumber hidrogen. Variasi logam transisi pada katalis bimetal dilakukan untuk mengetahui pengaruh masing-masing logam terhadap aktivitas katalis Pd/TiO2. Preparasi katalis dilakukan dengan metode impregnasi kering atau incipient wetness dengan prekursor berupa: 1 garam PdCl2; 2 senyawa garam nitrat Co dan Ni; 3 garam ammonium molibdenum dan 4 penyangga Titania TiO2 P-25. Katalis hasil preparasi dianalisis menggunakan, TEM dan H2-TPR. Reaksi dari masing-masing katalis dilakukan menggunakan batch reactor pada suhu 250 C selama 1 jam dengan tekanan gas He sebesar 30 bar. Produk reaksi kemudian dianalisis menggunakan GC-FID, untuk menentukan persen konversi dari substrat berupa guaiacol. Katalis Ni-Pd/TiO2 menunjukan aktivitas yang tinggi terhadap reaksi HDO, dengan persen konversi guaiacol sebesar 31,21, serta persen konversi 2-propanol sebesar 16,26. Katalis ini kemudian direaksikan tanpa hadirnya pelarut 2-propanol, untuk melihat pengaruh 2-propanol sebagai sumber hidrogen. Rendahnya persen konversi sebesar 11,53 , menunjukan 2-propanol berperan dalam reaksi HDO sebagai penyedia hidrogen.

ABSTRACT
The depletion of fossil fuel has become current energy issue that has been an attention of the development of renewable energy which sustainable and environmental friendly. Bio oil is a sustainable energy that produced from pyrolysis process of organic materials such as guaiacol compound derived from lignin bio polymers. In this study, guaiacol upgrading was used as a bio oil model compound in hydrodeoxygenation HDO reaction with Catalytic Transfer Hydrogen CTH by reducing oxygen content and double bond in the aromatic ring. Hydrodeoxygenation reaction of guaiacol was conducted by using heterogenous monometallic Pd TiO2 and bimetallic M Pd TiO2 M Co, Mo, and Ni catalysts, with 2 propanol as a hydrogen source. The addition of various transition metals to the bimetallic catalyst was performed to determine the effect of each metal on the activity of Pd TiO2 catalyst. The catalysts were synthesized by dry impregnation or incipient wetness method with precursors 1 PdCl2 salt 2 Co and Ni nitrate salt 3 ammonium moybdenum salt, and 4 supported catalyst titania TiO2 P 25. The prepared catalysts were characterized using TEM and H2 TPR. The HDO reaction of each catayst was carried out using a batch reactor at 250 C for 1 hour with 30 bar pressure of He gas. The reaction products were analyzed by GC FID to determine the conversion of guaiacol. The result showed that Ni Pd TiO2 catalyst exhibited a high activity of HDO reaction with conversion of guaiacol 32,21 and 16,26 for 2 propanol conversion percentage. This catalyst was then reacted with the same condition but without the presence of 2 propanol to evaluate the effect of alcohol solvent addition as the source of hydrogen. The low conversion percentage of guaiacol compound 11.53 showed that 2 propanol plays an important role as hydrogen source during the HDO reaction."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Efendi
"Ketersediaan minyak bumi yang semakin menipis, harganya yang tidak stabil, dan potensi kerusakan lingkungan akibat pemakaian bahan bakar fosil mendorong pengembangan bahan bakar alternatif yang dapat menggantikan bahan bakar fosil, termasuk avtur. Bioavtur merupakan bahan bakar terbarukan yang memiliki karakteristik serupa dengan avtur. Bahan baku potensial untuk produksi bioavtur di Indonesia adalah minyak kelapa. Komposisi asam lemak dalam minyak kelapa sesuai dengan kisaran rantai atom karbon avtur. Selain itu, Indonesia juga merupakan negara dengan pangsa ekspor minyak kelapa terbesar kedua di dunia yang menunjukkan bahwa pemanfaatan minyak kelapa di Indonesia masih sangat minim.
Pada penelitian ini, bioavtur disintesis dari minyak kelapa melalui reaksi hidrodeoksigenasi untuk mengonversi asam lemak menjadi hidrokarbon dengan menghilangkan oksigen. Katalis yang digunakan dalam reaksi ini adalah katalis NiMoP/Al2O3. Reaksi hidrodeoksigenasi dilakukan dengan variasi tekanan dan suhu, yaitu pada tekanan 10, 15, dan 20 bar, dan suhu 375, 385, dan 400°C. Reaksi dihentikan apabila telah mencapai kesetimbangan berdasarkan analisis produk gas dengan GC-TCD. Reaksi hidrodeoksigenasi pada suhu 375°C dan tekanan 10 bar mampu menghasilkan konversi sebesar 92,16%, hydrocarbon content sebesar 87,18%, serta selektivitas dan yielad bioavtur sebesar 79,36% dan 55,56%. Produk cair didistilasi untuk memperoleh produk fraksi avtur. Dari hasil uji densitas, viskositas, bilangan asam, nilai kalor, dan titik beku pada distilat bioavtur diperoleh nilai yang cukup baik.

The increasing of scarce of petroleum availability, unstable prices, and potential environmental damage due to the use of fossil fuel encourage the development of alternative fuels that can replace fossil fuels, including jet fuel. Bio-jet fuel is a renewable fuel that has similar characteristics to jet fuel. The potential raw material for bio-jet fuel production in Indonesia is coconut oil. The composition of fatty acids in coconut oil corresponds to the range of carbon atomic chain of jet fuel. In addition, Indonesia is also the country with the second largest share of coconut oil exports in the world which shows that the use of coconut oil in Indonesia is very less.
In this study, bio-jet fuel was synthesized from coconut oil through hydrodeoxygenation reaction to convert fatty acids to hydrocarbons by removing oxygen. The catalyst used in this reaction was NiMoP/Al2O3 catalyst. The hydrodeoxygenation reaction was carried out with variations of pressure and temperature, at pressures of 10, 15, and 20 bar, and temperatures of 375, 385, and 400°C. The reaction was stopped if it had reached equilibrium based on GC-TCD analysis of gas product. The hydrodeoxygenation reaction at 375°C and 10 bar was able to produce high conversion (92.16%), much hydrocarbon content (87.18%), high selectivity and also yield of bio-jet fuel (79.36% and 55.56%). Liquid products were distilled to obtain avtur fraction products. From the results of the density, viscosity, acid number, heating value, and freezing point analysis of the bio-jet fuel distillate, good values were obtained.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Kiswanto
"Biodiesel dari minyak kelapa sawit sebagai salah satu jenis biofuel banyak digunakan sebagai pengganti bahan bakar fosil. Ketergantungan akan plastik sulit lepas pada kebutuhan sehari-hari, dan memiliki dampak negatif bagi lingkungan karena plastik sulit diurai oleh tanah dalam waktu singkat. Namun, pada plastik terdapat salah satu komponen penyusun yaitu polipropilena yang biasa dijumpai sebagai penyusun plastik makanan. Polipropilena dapat dimanfaatkan sebagai pelarut pada penelitian ini karena dapat melarutkan trigliserida dalam minyak sawit dan pada proses HDO, dengan polipropilena akan dicairkan dan diekstrak melalui proses pirolisis termal dikarenakan gas hidrogen hanya dapat berfungsi pada campuran berfasa cair. Penelitian ini akan membahas mengenai fenomena yang dialami oleh RBDPO yang memiliki kandungan trigliserida tinggi dengan pirolisat PP dalam reaksi hidrodeoksigenasi menggunakan katalis Ni-Cu/ZrO2 yang memiliki perbedaan pada kondisi operasi yakni waktu reaksi maksimum pada reaksi hidrodeoksigenasi. Waktu reaksi dipilih sebagai variabel bebas karena berpengaruh terhadap konversi reaksi yang diperoleh, dalam hal ini yaitu hasil konversi RBDPO. Hal ini karena semakin lama waktu reaksi yang dilakukan, maka akan meningkatkan hasil konversi reaksi. Penelitian ini akan dilakukan dalam kondisi suhu 280ºC dalam tekanan 18 bar dengan memvariasikan waktu reaksi optimum HDO selama 2, 3, 4, dan 5 jam. Kemudian melakukan analisis terhadap karakteristik katalis yang digunakan dan produk biofuel HDO. Didapatkan hasil dari penelitian terhadap yield hasil HDO melalui uji FTIR, GCMS, dan C-NMR diperoleh mengalami kenaikan dari 8% kandungan hidrokarbon parafin (alkana) menjadi 65% pada waktu reaksi 5 jam sebagai waktu yang optimal dengan keterlibatan penggunaan katalis Ni0,59Cu0,41/ZrO2 pada proses reaksi hidrodeoksigenasi. Tingginya hidrokarbon jenuh dengan dominansi rantai C12-C20 mengindikasikan bahwa hasil hidrodeoksigenasi pada RBDPO dan pirolisat polipropilena telah berhasil mengonversi senyawa oksigenat menjadi rantai karbon biofuel.

Biodiesel from palm oil as a type of biofuel is widely used as a substitute for fossil fuels. The dependence on plastic is difficult to escape on daily needs, and has a negative impact on the environment because it is difficult for the soil to decompose in a short period of time. However, in plastic there is one constituent component, namely polypropylene which is commonly found as a constituent of food plastic. Polypropylene can be used as a solvent in this study because it can dissolve triglycerides in palm oil and in the HDO process, with polypropylene will be liquefied and extracted through a thermal pyrolysis process because hydrogen gas can only function in liquid cephalic mixtures. This research will discuss the phenomenon experienced by RBDPO which has a high triglyceride content with PP pyrolysate in the hydrodeoxygenation reaction using a Ni-Cu/ZrO2 catalyst which has differences in operating conditions, namely the maximum reaction time in the hydrodeoxygenation reaction. The reaction time is chosen as a free variable because it affects the conversion of the reaction obtained, in this case, the result of the RBDPO conversion. This is because the longer the reaction time carried out, the more the reaction conversion results will increase. The study will be conducted under temperature conditions of 280ºC at a pressure of 18 bar by varying the optimal reaction time of HDO for 2, 3, 4, and 5 hours. Then conduct an analysis of the characteristics of the catalysts used and HDO biofuel products. The results of HDO results through FTIR, GCMS, and C-NMR tests were obtained to increase from 8% paraffin hydrocarbon content (alkanes) to 65% at a reaction time of 5 hours as the optimal time with the involvement of the use of Ni0.59Cu0.41 / ZrO2 catalysts in the hydrodeoxygenation reaction process. The high level of saturated hydrocarbons with the dominance of C12-C20 chains indicates that the results of hydrodeoxygenation in RBDPO and polypropylene pyrrolisate have succeeded in converting oxygenate compounds into biofuel carbon chains."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andika Mardianto
"Biofuel merupakan alternatif yang sangat potensial sebagai bahan bakar fosil. Hidrodeoksigenasi trigliserida menjadi salah satu metode yang dapat digunakan dalam pembuatan biofuel. Penelitian ini akan memperlihatkan reaksi hidrodeoksigenasi pada trigliserida dengan reaktor tangki berpengaduk menggunakan katalis Ni-Cu/ZrO2. Penelitian ini memiliki tujuan untuk mengetahui pengaruh dari kecepatan stirrer dengan nilai 500, 600, 700 dan 800 RPM serta penggunaan pirolisat PP sebagai pelarut terhadap yield dan komposisi produk biofuel. Reaksi hidrodeoksigenasi berlangsung pada temperatur 3600C, tekanan gas H2 14 bar dan waktu reaksi 4 jam. Produk biofuel akan dianalisis dengan metode FTIR dan GCMS yang digunakan untuk mengetahui komposisi produk, ikatan kimia, dan jalur reaksi yang terjadi. Hasil penelitian menunjukkan bahwa semakin tinggi kecepatan stirrer menyebabkan yield biofuel naik namun efisiensi HDO turun. Pada kondisi kecepatan stirrer tinggi diperkirakan efek steric hindrance sangat tinggi akibat dari solubilitas H2 tinggi sehingga adsorpsi pada trigliserida menjadi sulit terjadi. Hasil GCMS menunjukkan bahwa produk hidrokarbon dengan panjang 18 dan 16 karbon banyak dijumpai sehingga jalur reaksi hidrodeoksigenasi dominan terjadi. Penggunaan pirolisat PP memberikan akses transfer massa yang lebih baik bagi umpan dan katalis, terbukti dengan yield yang naik hingga 66,7% dari kondisi tanpa pirolisat PP dan meningkatkan konversi.

Biofuel is a promising alternative as substitute of fossil-based fuel. Biofuel can be synthetized from various method, one of them is hydrodeoxygenation of triglycerides. This research will show the hydrodeoxygenation reaction of triglyceride in stirred tank reactor using Ni-Cu/ZrO2 catalyst. The objective of this research is to obtain the effect of stirring rate from 500, 600, 700 and 800 RPM also obtained the effect of pyrolysate polypropylene as substitution solvent in yield and composition of biofuel. The reaction is operated at 3600C, 14 bar H2, and reaction time 4 hour. Biofuel products were analyzed using FTIR and GCMS to determine the product composition, chemical bond, and reaction pathway. From the GCMS data, with increase of stirring rate caused the biofuel yield is increase but the HDO efficiency decrease. In the high stirring rate, it is estimated that the steric hindrance is high due to the high solubility of H2 that caused the difficulty to adsorption of triglycerides. The GCMS data show that the dominance of C-16 and C-18 hydrocarbon in the product that determined the main pathway reaction is hydrodeoxygenation. The pyrolisate PP solvent giving better mass transfer access to triglycerides and catalyst, that raised the biofuel product yield to 66,7% from the condition without pyrolysate PP and increased the conversion rate."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yogiswara Paramatatya
"[ABSTRAK
Green diesel merupakan bahan bakar generasi kedua dari biofuel yang menggunakan minyak nabati. Bahan baku yang dipilih adalah minyak nyamplung yang memiliki kadar minyak 50 hingga 70%. Green diesel ini diharapkan dapat menyamai bahakan melebihi petroleum diesel dengan keunggulan angka setana dan impurities yang lebih rendah, juga memiliki spesifikasi yang minimal sama dengan petroleum diesel yang ada saat ini. Adapun metode yang digunakan untuk mensintesis green diesel yaitu metode hidrodeoksigenasi dengan menggunakan katalis NiMo/Zeolit dengan bahan baku minyak nyamplung. Kondisi operasi yang digunakan yaitu pada tekanan 12 bar dan variasi suhu operasi yang digunakan yaitu 350oC, 375oC dan 385oC. Hasilnya didapat bahwa Kondisi operasi optimal dicapai pada suhu 375oC dan tekanan 12 bar dengan spesifikasi green diesel yang didapatkan memiliki densitas 0,829 g/cm3, viskositas 0,344 Cp, dan indeks setana 63. Selanjutnya penelitian ini dapat lebih disempurnakan lagi untuk mendapatkan konversi yang lebih tinggi.

ABSTRACT
Green diesel is a second generation biofuel that being converge from 100% vegetable oil. The raw material that chosen is an oil that being produced from Calophyllum inophyllum seed that have oil content between 50 and 70%. Green diesel hypothised to be in par with petroleum diesel and have higher cetane number and fewer impurities. Moreover, at least, have a minimum specification as same as petroleum diesel. The method that being used to synthesize green diesel is hydrodeoxygenation method using NiMo/Zeoilt as catalyst. In this research, the operation condition that being applied is the pressure at 12 bar and temperature at 350oC, 375oC dan 385oC. the result shows that the optimum Operaton condition is temperature at 375oC and pressure at 12 bar. the specification of green diesel density at 0,829 g/cm3, viscosity at 0,344 cSt, dan cetane number 63. In the future this research can be perfected in order to get a higher conversion, yield and selectivity of product., Green diesel is a second generation biofuel that being converge from 100% vegetable oil. The raw material that chosen is an oil that being produced from Calophyllum inophyllum seed that have oil content between 50 and 70%. Green diesel hypothised to be in par with petroleum diesel and have higher cetane number and fewer impurities. Moreover, at least, have a minimum specification as same as petroleum diesel. The method that being used to synthesize green diesel is hydrodeoxygenation method using NiMo/Zeoilt as catalyst. In this research, the operation condition that being applied is the pressure at 12 bar and temperature at 350oC, 375oC dan 385oC. the result shows that the optimum Operaton condition is temperature at 375oC and pressure at 12 bar. the specification of green diesel density at 0,829 g/cm3, viscosity at 0,344 cSt, dan cetane number 63. In the future this research can be perfected in order to get a higher conversion, yield and selectivity of product.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58837
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Husein Shahab
"Kebutuhan Indonesia akan bahan bakar diesel semakin meningkat setiap tahunnya sehingga tidak dapat dipenuhi dengan produksi dalam negeri, oleh karena itu pemerintah melakukan kebijakan import untuk memenuhinya. Biofuel merupakan salah satu alternatif bahan bakar yang sangat potensial untuk menjawab pemasalahan tersebut, salah satu jenis biofuel ialah renewable diesel, yang merupakan senyawa turunan hidrokarbon yang dihasilkan dari reaksi hidrodeoksigenasi terhadap minyak nabati. Salah satu sumber minyak nabati tersebut ialah minyak biji nyamplung. Minyak nyamplung dipilih karena kandungan trigliserida yang tinggi, tidak digunakan sebagai bahan pangan, dan juga karena produktivitasnya yang tinggi di Indonesia. Minyak tersebut kemudian digunakan sebagai bahan baku dalam mensintesis renewable diesel melalui rangkaian reaksi hidrodeoksigenasi dengan katalis NiMo/Zeolit dan NiMo/Karbon. Sebagai hasil dari reaksi yang terjadi pada kondisi tekanan 10 dan 12 bar serta temperatur 375⁰C renewable diesel yang dihasilkan memiliki spesifikasi melebihi solar komersial, dengan hasil terbaik didapatkan dengan rekasi meggunakan katalis NiMo/Karbon teraktifasi dengan indeks setana sebesar 81,83 , konveri 81,99%, yield sebesar 68,08% dan selektifitas sebesar 84,54%.

Indoneisa's need of diesel fuel are increasing every year and getting urge, thus the need can?t be fulfilled by domestic production. Therefore the government applied the import regulation to overcome the demand.. Biofuel is very potential to answer such a problem, one type of biofuel is renewable diesel, which is hydrocarbon derivative from hydrodeoxygenation reaction from vegetable oil. One of the source of the vegetable oil is Calophyllum Inophyllum oil. This oil was chosen because of its high content in triglyceride, inedible, and it?s high productivity rate in Indonesia. This oil then used as the raw material to synthesize renewable diesel through hidrodeoxygenation reaction catalyzed by NiMo/Zeolite and NiMo/Carbon. As the result of the reaction in controlled condition with 10 and 12 bar pressure and constant temperature at 375⁰C, the obtained renewable diesel exceeding the specification of commercial petroleum diesel. The best result obtained with NiMo/Carbon activated catalyzed reaction, with cetane index."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S64071
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail Ghulam Halim
"Upaya intens dilakukan oleh pemerintah Indonesia dalam mengatasi persoalan defisit kebutuhan diesel domestik dengan mewajibkan pencampuran biodiesel pada solar hingga 20 pada tahun 2016. Namun, biodiesel yang ada memiliki beberapa kekurangan diantaranya penggunaan minyak nabati pangan sebagai bahan baku produksi. Simulasi sintesis renewable diesel berbasis minyak nabati non-pangan dengan rute produksi hidrodeoksigenasi trigliserida langsung dibuat dengan simulator Unisim Design R 390.1 pada penelitian ini. Dari simulasi didapatkan kondisi operasi optimal untuk sintesis renewable diesel yaitu pada tekanan 30 bar dan suhu 320?-380?C, dengan konversi 71.50 , yield 45.5 , dan selektivitas 38.3 . Selain itu, diperoleh pula tiga jenis minyak nabati non-pangan yang sesuai untuk menjadi alternatif bahan baku pembuatan renewable diesel di Indonesia, yaitu minyak kosambi, minyak nyamplung, dan minyak kemiri sunan.

Intense efforts is exerted by the Indonesian government in solving the domestic diesel demand deficit problem by obligating the mixing of biodiesel in diesel up to 20 on 2016. However, biodiesel has some disadvantages such as the use of edible oils as raw materials for production. Synthesis simulation of non edible vegetable oil based renewable diesel with direct triglyceride hydrodeoxigenation production route was made with Unisim Design R 390.1 simulator in this research. From the simulation, the optimum operating conditions for renewable diesel synthesis reached are 30 bar and temperature 320 380 C, with 71.50 conversion, 45.5 yield and 38.3 selectivity. In addition, three types of non food vegetable oils are also suitable to be an alternative raw material for making renewable diesel in Indonesia, namely kosambi oil, nyamplung oil, and siri kemiri oil."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza Fauzi
"Sebagai upaya memenuhi kebutuhan bahan bakar penerbangan yang meningkat, sintesis bioavtur dari bahan biomassa lignoselulosa bisa menjadi solusi saat ini. Bonggol jagung sebagai bahan baku dipilih karena kelimpahannya di Indonesia mencapai 7,2 juta ton/tahun dan kandungan holoselulosa yang tinggi sehingga akan menguntungkan saat dikonversi menjadi bio-oil dengan pirolisis. Tujuan penelitian ini untuk mendapatkan analisis kandungan bio-oil dan mendapatkan analisis literatur potensi senyawa yang dominan pada langkah peningkatan mutu bio-oil dan katalisnya dari penelitian eksperimental. Pirolisis ditempuh dengan laju pemanasan rendah sebesar 50C/menit hingga temperatur 5000C dengan kecepatan pengaduk 100 rpm. Berdasarkan analisis GC-MS, komposisi senyawa terbanyak pada bio-oil berupa asam benzoat sebesar 44,45%, yang terbentuk dari oksidasi aldehid yang didahului oleh oksidasi alkohol. Ditinjau dari analisis NMR, ikatan kimia dominan yang terdeteksi ialah membentuk siklopentenon, dengan ikatan C pada siklopentena dan karbonil keton yang masing-masing sebesar 55,61% dan 34,81% pada C-NMR, serta ikatan H pada siklopentena dan C-alfa di keton dengan kelimpahan 47,41% dan 25,19% pada H-NMR. Pembentukan siklopentenon memperlihatkan ciri khas proses slow pyrolysis dengan menghadirkan lebih banyak reaksi siklisasi yang terjadi dari hasil dehidrasi cincin glukosa yang terbuka. Bio-oil dengan dominan siklopentenon ini merupakan basis awal untuk pembentukan bioavtur dengan densitas dan nilai kalor yang tinggi seperti bi(siklopentana). Berdasarkan tinjauan pustaka, rute mekanisme reaksi upgrading dengan katalis dapat dilakukan melalui urutan proses hidrogenasi dengan katalis Cu-Ni-Al dengan yield siklopentanon 95,8%, kondensasi aldol siklopentanon dengan katalis MgO-ZrO2 mampu mencapai yield 2-siklopentilidin-siklopentanon sebesar 84,6%, dan hidrodeoksigenasi disertai katalis Ni/SiO2 menghasilkan bi(siklopentana) dengan yield sebesar 93%. Katalis untuk reaksi hidrogenasi dan hidrodeoksigenasi harus bersifat asam dan untuk reaksi kondensasi aldol bersifat asam-basa. Sebagai produk bioavtur potensial berupa bi(siklopentana) dengan rasio H/C sebesar 1,8 dinilai telah mendekati bioavtur komersial dengan rasio H/C 1,92. Kuantifikasi biomassa yang terkonversi menjadi bioavtur potensial berupa bi(siklopentana) melalui mekanisme senilai 15,96%.

To fulfill the need of aviation fuel, the synthesis of bioavtur from lignocellulosic biomass can be the current solution. Corn cobs as raw material was chosen because of its potential abundance in Indonesia reaching 7.2 million tons/year and high holocellulose content so that it will be more profitable when converted to bio-oil by pyrolysis. The purpose of this study is to obtain the the bio-oil compositions analysis and obtain a literature analysis of the potential of dominant compounds in the step of improving the quality of bio-oil and its catalysts from experimental research. Pyrolysis is pursued at a low heating rate of 50C/min to a temperature of 5000C with a stirring speed of 100 rpm. Based on GC-MS analysis, the composition of most compounds in bio-oil is benzoic acid with 44.45%, which is formed from oxidation of aldehydes preceded by oxidation of alcohol. In terms of the NMR analysis, the dominant chemical bonds detected were to form cyclopentenone, with C bonds on cyclopentene and carbonyl ketones which were 55.61% and 34.81% on C-NMR, and H bonds on cyclopentene and C-alpha to ketones with an abundance of 47.41% and 25.19% in H-NMR, respectively.The formation of cyclopentenone shows the special characteristics of slow pyrolysis process by presenting more cyclization reactions that occured from the dehydration results of an opened-glucose ring. Bio-oil with cyclopentenone dominant composition is the initial basis for bioavtur synthesize with high density and high heating value characteristics such as bi(cyclopentane). Based on literature review, the mechanism of upgrading reactions with catalysts can be carried out through a sequence of hydrogenation processes with a Cu-Ni-Al catalyst with a cyclopentanone yield of 95.8%, aldol condensation of cyclopentanone with MgO-ZrO2 catalyst was able to reach a yield of 2-cyclopentylidine-cyclopentanone for 84, 6%, and hydrodeoxygenation with Ni/SiO2 catalyst produced bi(cyclopentane) with a yield of 93%. The catalyst for the hydrogenation and hydrodeoxygenation reactions must be acidic and for the aldol condensation reaction is acidic-base. As a potential bioavtur product in the form of bi(cyclopentane) with an H/C ratio of 1.8, it is considered to have approached a commercial bioavtur with an H/C ratio of 1.92. Quantification of biomass converted into bi(cyclopentane) as bioavtur potential was 15.96%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Irfan
"Semakin tingginya kebutuhan BBM, dan semakin menurunnya cadangan minyak bumi untuk memenuhi kebutuhan tersebut, maka para peneliti akan berusaha untuk mencari alternatif bahan bakar lain. Salah satu solusi tersebut yaitu bahan bakar yang diproses dari minyak nabati yang merupakan sumber daya alam yang dapat diperbaharui. Pada penelitian ini, akan dibuat bahan bakar dari minyak nabati yang disebut dengan renewable diesel. Renewable diesel merupakan generasi kedua dari biofuel yang menggunakan minyak nabati. Bahan baku yang dipilih dalam penelitian ini yaitu minyak sawit. Renewable diesel ini diharapkan memiliki komposisi yang menyamai petroleum diesel, dan juga memiliki spesifikasi yang minimal sama dari petroleum diesel, tetapi di sisi lain juga memiliki keunggulan yaitu seperti angka setana yang lebih tinggi dan kandungan impurities yang lebih rendah. Adapun metode yang digunakan untuk mensintesis renewable diesel yaitu metode hidrodeoksigenasi dengan menggunakan katalis Pd/Zeolit dengan bahan baku minyak sawit. Pada reaksi hidrodeoksigenasi ini, kondisi operasi yang diberlakukan yaitu tekanan 9 bar, 12 bar, dan 15 bar dan variasi suhu operasi yang digunakan yaitu 375oC dan 400oC. Harapan yang ingin dicapai dari proses ini yaitu konversi setinggi-tingginya, angka setana yang lebih tinggi dari solar komersial, dan kandungan impurities serendah-rendahnya.

Time by time, the demand for fuel is getting higher, while petroleum reserves is decreasing significantly, then the researchers will try to look for other alternative fuels. One best solution is processed fuel from vegetable oil which is a natural resource that can be renewed. In this study, the solution will be made from vegetable oil fuel called renewable diesel. Renewable diesel is a second generation of biofuels that use vegetable oil. Raw materials that are selected in this study, namely palm oil. Renewable diesel is expected to have an equal composition of petroleum diesel, and also have the same minimum specifications of petroleum diesel, but on the other hand also has the advantage of such a higher cetane number and lower content of impurities. The method used to synthesize the renewable diesel is hydrodeoxygenation method using the Pd/Zeolite catalyst with palm oil feedstock. In this hydrodeoxygenation reaction, the operating conditions are pressure of 9 bar, 12 bar, and 15 bar and operating temperature variations used are 375oC and 400oC. Hopefully the ressult achieved from this process is the conversion as high as possible, higher cetane number than commercial diesel, and the content of impurities as low as possible."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54842
UI - Skripsi Membership  Universitas Indonesia Library
cover
Moh. Fuad Rofiqi
"Untuk dapat terus memenuhi kebutuhan energi, dibutuhkan suatu usaha untuk mensubstitusi sumber energi fosil dengan sumber energi lain yang bersifat terbarukan dan ramah lingkungan. Renewable diesel dapat menjadi solusi bagi masalah yang dihadapi dunia saat ini, karena renewable diesel berbahan dasar nabati yang ramah lingkungan dan bersifat terbarukan. Selain penelitian dalam laboraturium, pembuatan simulasi dan modelling juga perlu untuk dilakukan agar dapat menganalisis proses reaksi sintesis renewable diesel lebih lanjut.
Untuk itu Pada penelitian ini dilakukan modifikasi modifikasi persamaan model prediktif dengan metode Analytical Semi Empirical Model (ASEM) untuk menggambarkan produk hasil proses sintesis renewable diesel melalui hidrodeoksigenasi yang melibatkan variasi temperatur dan tekanan. Kondisi suhu optimum proses sintesis renewable diesel melalui metode hidrodeoksigenasi yang diperoleh dari hasil simulasi yaitu untuk bahan baku minyak kedelai dengan katalis CoMo pada suhu 374,8oC dan katalis Pd 312oC, untuk bahan baku rapeseed oil dengan katalis NiMo pada 340oC, untuk bahan baku minyak biji bunga matahari pada 435oC. Kemudian untuk simulasi tekanan yang optimum diperoleh hasil simulasi Sintesis renewable diesel melalui deoksigenasi katalitik minyak kedelai pada 7,8 bar dan Sintesis renewable diesel melalui deoksigenasi katalitik minyak nabati 60 bar.

In order to continue to fulfill our energy needs, it takes an effort to substitute fossil energy sources with other energy sources that are renewable and environmentally friendly. Renewable diesel can be a solution to the problems facing the world today. Besides research in the laboratory, creating simulations and modeling also needs to be done in order to analyze the process of the synthesis reaction further renewable diesel.
In this research, a predictive model modification modifications equation with Semi-Empirical Analytical Model (ASEM) to describe the product of the synthesis of renewable diesel through hidrodeoksigenasi involving variations in temperature and pressure. The optimum temperature conditions through a process of synthesis methods hidrodeoksigenasi renewable diesel derived from the simulation results that for the soybean oil feedstock with CoMo catalyst at a temperature of 374.8 oC and 312 oC Pd catalyst, for the few oil feedstock with a catalyst Nimo at 340 oC, for the seed oil feedstock sunflower at 435 oC. Then the optimum pressure for the simulation of the simulation results obtained Synthesis renewable diesel via catalytic deoxygenation of soybean oil at 7.8 bar and a Synthesis renewable diesel via catalytic deoxygenation of vegetable oil 60 bar
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54970
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>