Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Dedy Priambodo
"PLTN HTGR berdaya kecil mempunyai efisiesi 25%, sehingga perlu dilakukan usaha untuk meningkatkannya. Tujuan dari penelitian adalah untuk mendapatkan sistem kogenerasi HTGR-siklus refrijerasi dengan performa teknis dan ekonomis yang baik. Pemodelan HTGR dengan Cycletempo dan perhitungan energi, eksergi dan ekonomi terhadap sistem kogenerasi telah dilakukan. Hasil perhitungan eksergi menunjukan reaktor adalah komponen paling tidak efisien, akibat ireversibilitas transfer energi dari reaksi pembelahan ke pendingin helium dan beda temperature di reaktor. Disisi refrijerasi, ireversibilitas tertinggi terjadi pada generator dan evaporator, karena ireversibilitas transfer panas dan perbedaan temperatur. Analisis energi-eksergi mendapatkan rasio tekanan berbanding terbalik terhadap COP disebabkan meningkatnya irevesibilitas total siklus. Sementara temperatur generator, konsentrasi ammonia dan temperature evaporator berbanding lurus terhadap COP. Sedangkan pemanfaatan kogenerasi hanya mampu meningkatkan efisiensi siklus 0.7%. Untuk dapat memenuhi BPP PLN, HTGR harus mempunyai biaya sesaat 5,500 $/kWh? 6,500 $/kWh, faktor kapasitas diatas 75% dan discount rate 5%. Biaya pembangkitan sistem kogenerasi 1.5% lebih tinggi dibanding pada HTGR. Karena biaya panas lebih dominan dalam biaya pendinginan maka sistem dengan COP tinggi mempunyai biaya pendinginan yang murah. Biaya pendinginan sistem kogenerasi masih lebih murah dibandingkan dengan sistem konvensional. Selisih biaya pendinginan kogenerasi dengan sistem konvensional berkisar 6.86 - 11.24 ¢/kWh merupakan keuntungan langsung dari sistem kogenerasi yang dapat dijadikan subsidi bagi biaya pembangkitan.

HTGR Rankine Steam Cycle has a low efficiency, around 25%, therefore need to concern for improve the efficiency. The purpose of study was to obtain HTGR refrigeration cogeneration with the best technical and economic performance. Cycletempo modeling, energy exergi and economy analysis have done. Exergi calculation shows the nuclear reactor is the most inefficient, due to the irreversibility of the transfer of energy from fission to coolant helium and temperature difference. While the refrigeration side, the most inefficient located at generator and evaporator, due to heat transfer and temperature difference. Energy-exergy analysis shows pressure ratio affects to the COP inversely due to increased total irreversibility of cycle. While the generator temperature, ammonia concentration and evaporator temperature is proportional to the COP. Application of cogeneration will increase efficiency about 0.7% from single purpose HTGR. To fulfill BPP PLN, HTGR should have overnight cost $ 5.500 - $ 6.500 / kWh, capacity factors above 75% and 5% discount rate. Generation cost of cogeneration would be 1.5% more than HTGR single purpose. Heat cost have biggest share on cooling cost, so that system with high COP is cheaper than other. Cooling cost of cogeneration systems is cheaper than fossil-fired system. Difference in cooling cost between fossil and cogeneration system about 6.86 - 11.24 ¢/kWh is a revenue of the cogeneration that can be use as subsidize for generation cost.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43818
UI - Tesis Membership  Universitas Indonesia Library
cover
"CASES CAPABILITY ON ENERGY CONVERSION OF HTGR . Energy conversion capability on HTGR is determined by the gas coolant which is also as energy transfer. So that the gases capability on energy conversition should be viewed....."
Artikel Jurnal  Universitas Indonesia Library
cover
Erlan Dewita
"Reaktor tipe HTGR merupakan reaktor berpendingin gas temperatur tinggi (~900°C). Terdapat 2 tipe elemen bakar HTGR yaitu praismatik dan pepple bed. Kedua tipe elemen bakar tersebut tersusun dari partikel berlapis TRISCO yang terdiri dari lapisan IPyC, SiC, dan OPyC yang berfungsi sebagai pengungkung produk fisi dan menjaga integritas bahan bakar. Reaktor beroperasi dengan temperatur tinggi, sehingga kinerja/kemampuan bahan bakar dalam menajan produk fisi perlu diketahui. Tujuan studi adalah untuk memperoleh pemahaman tentang karakteristik produk fisi yang dihasilkan bahan bakar, karakteristik penghalang dan kinerja bahan bakar dalam menahan produk fisi. Metode yang digunakan adalah kajian dan analisis dengan mengevaluasi kemampuan penghalang (barrier) dalam menahan produk fisi pada elemen bakar primatik dan pebble. Hasil studi menunjukkan bahwa terdapat beberapa mekanisme beberapa produk potensial lepasnya produk fisi, yaitu: difusi melalui lapisan, kerusakan lapisan, korosi SiC oleh produk fisi palladium dan dekomposisi termal SiC. Bahan bakar merupakan penghalang pertama terhadap beberapa mekanisme potensial lepasnya radionuklida produk fisi sedangkan lapisan SiC merupakan penghalang utama yang menahan sebagian besar produk fisi gas dan padat pada temperatur operasi normal (< 1250°C). "
Jakarta: Pusat Pengembangan Energi Nuklir, Badan Tenaga Nuklir Nasional, 2017
530 JPEN 19:1 (2017)
Artikel Jurnal  Universitas Indonesia Library