Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara). Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds. The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T25915
UI - Tesis Open  Universitas Indonesia Library
cover
Benyamin Kusumoputro
"Makalah ini membantu tentang pengembangan sistem identifikasi pembicara menggunakan analisis spektra orde tinggi dan jaringan neural sebagai pengklasifikasi pola. Analisa spektra orde tinggi ini perlu dipergunakan untuk mengetahui performasinya dalam mengidentifikasi pembicara berdasarkan suara yang terpendam dalam Gaussian noise. Berkaitan dengan proses pengolahan data hasil analisis spektra orde tinggi memerlukan biaya komputasi yang sangat tinggi, maka kompresi data kemudian dilakukan tanpa mengurangi kandungan informasi yan ada di dalamnya. Kompresi data ini dilaksanakan menggunakan jaringan neural hibrida antara SOM dan LVQ, dengan membangkitkan sejumlah vektor pewakil yang dianggap dapat mewakili seluruh vektor pewakil yang dianggap dapat mewakili seluruh vektor data hasil analisa spektra orde tinggi tersebut. Sebagai salah satu faktor dalam memperbandingkan kinerja analisa spektra orde tinggi ini, maka jumlah vektor pewakil dibatasi bergerak antara 25 hingga 343 buah. Jaringan neural probabillistik yang dipergunakan sebagai pengklasifikasi pola, menunjukkan kinerja yang sangat baik untuk dapat menentukan apakah seorang pembicara dapat teridentifikasi dengan benar. Hasil eksperimen menunjukkan bahwa sistem dapat menentukan dengan tingkat ketelitian 100% pada suara dengan tingkat noise 20 dB dan menurun menjadi 97% untuk SNR dB dan 89% untuk SNR 0 dB."
2003
JIKT-3-2-Okt2003-111
Artikel Jurnal  Universitas Indonesia Library
cover
Panji Zulfikar Sidik
"Penelitian ini mengukur efektivitas perangkat lunak Phonexia Speech Intelligence Resolver (SIR) dalam pemeriksaan audio forensik di Puslabfor Bareskrim Polri. Fokus penelitian meliputi sistem identifikasi pembicara (SID2), identifikasi bahasa (LID2), serta evaluasi akurasi menggunakan Likelihood Ratio (LLR). Proses pra-pemrosesan audio dilakukan menggunakan Audacity, dengan penerapan teknik seperti noise reduction, equalization, compression, enhancement, dan trimming untuk meningkatkan kualitas rekaman.
Hasil penelitian menunjukkan bahwa pra-pemrosesan audio memberikan kontribusi signifikan terhadap peningkatan nilai LLR dan kualitas rekaman, yang berdampak langsung pada akurasi identifikasi. Kombinasi lengkap (NR + EQ + C + EN + TS) menghasilkan kualitas terbaik untuk rekaman dengan gangguan berat, sedangkan kombinasi sederhana (NR + EQ + C) lebih efisien untuk rekaman dengan gangguan moderat. Nilai LLR meningkat secara signifikan setelah rekaman diproses, menunjukkan bahwa sistem dapat bekerja lebih optimal pada rekaman berkualitas tinggi.
Penelitian ini menegaskan pentingnya pra-pemrosesan sebagai langkah esensial dalam analisis audio forensik. Temuan ini diharapkan dapat memperkuat keandalan Phonexia SIR dalam mendukung proses investigasi kriminal, terutama dengan penerapan metode pra-pemrosesan yang tepat untuk meningkatkan validitas bukti audio.

This study evaluates the effectiveness of the Phonexia Speech Intelligence Resolver (SIR) software in forensic audio examination at the Puslabfor Bareskrim Polri. The research focuses on the speaker identification system (SID2), language identification (LID2), and accuracy evaluation using the Likelihood Ratio (LLR) method. Audio pre-processing was conducted using Audacity, employing techniques such as noise reduction, equalization, compression, enhancement, and trimming to improve recording quality.
The findings show that audio pre-processing significantly contributes to increasing LLR values and recording quality, directly enhancing identification accuracy. The complete combination (NR + EQ + C + EN + TS) produced the best results for recordings with heavy noise, while the simpler combination (NR + EQ + C) was more efficient for recordings with moderate noise. LLR values significantly improved after processing, demonstrating that the system performs optimally on high-quality recordings.
This study highlights the importance of pre-processing as an essential step in forensic audio analysis. These findings are expected to strengthen the reliability of Phonexia SIR in supporting criminal investigations, particularly through the implementation of appropriate pre-processing methods to enhance the validity of audio evidence.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2025
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library