Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
I Ketut Agung Enriko
"ABSTRAK
Penyakit kardiovaskuler adalah penyakit serius yang mematikan di mana seperempat kematian yang terjadi ternyata disebabkan oleh penyakit ini. Sementara itu, di negara berkembang seperti Indonesia kualitas layanan kesehatan masih rendah, ditandai dengan kurangnya tenaga dokter pada daerah-daerah rural dan terpencil. Kondisi ini menjadi motivasi perlunya merancang inovasi teknologi telemedical yang berfungsi membantu dokter melakukan diagnosis dan pengobatan penyakit kardiovaskuler. Penelitian ini mengusulkan sebuah sistem berbasis teknologi machine-to-machine M2M untuk mengecek kesehatan pasien yang akan melaporkan hasilnya ke dokter jantung secara jarak jauh melalui aplikasi website dan aplikasi mobile, yang diberi nama My Kardio. Desain dari sistem ini adalah terdiri dari tiga bagian utama yaitu bagian pasien patient site yang terdiri dari sensor-sensor dan gateway, bagian server server site yaitu server aplikasi web dan mobile yang terletak di cloud internet, dan bagian dokter doctor site yaitu aplikasi web dan mobile untuk dokter agar dokter dapat melakukan pengecekan dan diagnosis terhadap pasien secara online. Sistem ini dilengkapi dengan sistem prediksi auto-rekomendasi untuk memberikan rekomendasi kepada dokter dalam menentukan diagnosis penyakit yang diderita pasien. Sistem auto-rekomendasi ini dibangun dengan algoritma k-Nearest Neighbors kNN yang terbukti cukup baik performansinya dalam hal akurasi dan kecepatan. Uji coba telah dilakukan pada empat lokasi di daerah pinggiran Jakarta yaitu Kampung Banjarsari 10 pasien , Cibubur 15 pasien , Cimanggis 37 pasien , dan Pancoran 23 pasien pada total sejumlah 85 pasien. Evaluasi kuantitatif menghasilkan rata-rata akurasi prediksi sistem auto-rekomendasi adalah 76,47 , waktu pemrosesan sistem auto-rekomendasi 1 detik, dan performansi waktu transfer data dari lokasi pemeriksaan ke server M2M adalah 8,97 detik. Evaluasi secara kualitatif dilakukan melalui wawancara dokter spesialis jantung, dan diperoleh hasil bahwa aplikasi My Kardio sangat membantu terutama untuk daerah-daerah yang kekurangan dokter spesialis jantung; dan juga bermanfaat untuk kota besar di mana akses pasien ke dokter jantung juga terkendala oleh waktu praktek dokter yang terbatas dan kemacetan. Kata kunci:Machine-to-machine, penyakit kardiovaskuler, k-Nearest Neighbors.

ABSTRACT
Cardiovascular disease is a deadly disease which one-fourth of deaths are caused by this disease. Meanwhile, in developing country like Indonesia, the quality of health services is still low, marked by the lack of doctors to serve patients. This condition gives the motivation about the need for a new innovation to improve the life expectancy of cardiovascular patients in Indonesia, with the help of technology. This research proposes a machine-to-machine M2M technology-based system to check the health of patients which will report the results to the cardiologist remotely through the web and mobile applications, named My Kardio. The design of this system is composed of three main parts, the first one is patient site consisting of sensors and gateways, then server site which is web and mobile application server located in the Internet cloud, and the last is doctor site: web and mobile application for doctors to enable doctors checking and diagnosing patients online. The system is equipped with an auto - recommendation prediction system to provide recommendations to physicians in determining the diagnosis of illness suffered by the patient. This auto-recommendation system is built on the k-Nearest Neighbors kNN algorithm that has been proven with good accuracy and fast. Trials have been performed in four locations in the suburbs of Jakarta: Kampung Banjarsari 10 patients , Cibubur 15 patients , Cimanggis 37 patients , and Pancoran 23 patients of the total 85 patients. Quantitative analysis results are, first the prediction accuracy of the auto- recommendation system is 76.47 on average, then the processing time of auto- recommendation system is 1 second, and last, the duration of data transfer time from location to M2M server is 8.97 seconds. Qualitative analysis was made with cardiologists interviews, which results that My Kardio application is very helpful especially in remote areas which lacking of cardiologists, even for big cities where patients rsquo; access to cardiologists is a problem due to limited clinic time and traffic jams. "
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2486
UI - Disertasi Membership  Universitas Indonesia Library
cover
Raynaldi Suhaili
"ABSTRAK
Dalam beberapa tahun terakhir, kemajuan besar telah terjadi pada sistem pengenalan wajah. Banyak model yang telah diusulkan. Pada penelitian ini, uji coba dilakukan dengan model tertentu. Teknik Logarithm Transformation pertama-tama diterapkan untuk meningkatkan kualitas gambar wajah dan mengatasi variasi pencahayaan. Selanjutnya dilakukan proses ekstraksi fitur wajah dari gambar berdasarkan Singular Value Decomposition SVD . Nilai singular diambil sebagai fitur yang diasumsikan merepresentasikan gambar citra wajah. Kemudian, algoritma K-Nearest Neighbors KNN dijalankan untuk proses klasifikasi, sehingga menghasilkan persentase tingkat akurasi program. ORL faces database dipilih untuk menguji model program pengenalan wajah. Dalam penelitian ini, data uji menggunakan hasil ektraksi fitur SVD dibandingkan dengan data uji tanpa ekstraksi fitur. Dari hasil uji coba, diperoleh bahwa penggunaan data uji menggunakan hasil ekstraksi fitur SVD menghasilkan proses running time yang lebih cepat dibandingkan dengan menggunakan data tanpa ekstraksi fitur. Namun persentase tingkat akurasi rata-rata tertinggi yang didapatkan pada setiap iterasi terpilih, lebih baik hasilnya dengan data uji tanpa ektraksi fitur, yaitu sebesar 98,34 pada 90 data training, dibandingkan dengan data uji hasil ektraksi fitur SVD yang memperoleh persentase tingkat akurasi rata-rata sebesar 82,82 pada 90 data training.

ABSTRACT
In the past several years, major advances have occurred in face recognition system. Many models have been proposed. In this paper, the experiments were carried out with a particular model. The Logarithm Transformation LT technique is firstly applied to enhance the face image and handling lighting variations of face image. Furthermore, extract the feature of the face image based on Singular Value Decomposition SVD . The singular value is taken as a feature that is assumed to represent the face image. Then, K Nearest Neighbors KNN algorithm is run for the classification process, so it generates an accuracy of program. ORL database was chosen to test the model of face recognition program. In this research, data using the feature extraction were compared to the data without feature extraction. From the test results, it was found that the use of test data using feature extraction has a faster running time than using data without feature extraction. However, the highest rate of average accuracy that obtained on each chosen iteration, the result is better with the test data without feature extraction, that is 98.34 at 90 data training, compared to the test data using feature extraction which has average accuracy level of 82.82 at 90 of data training."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saragih, Glori Stephani
"Di Indonesia, stroke merupakan penyakit dengan angka kematian tertinggi yaitu menempati urutan pertama selama
lebih dari dua dekade, 1990-2017. Stroke dibagi menjadi dua jenis, iskemik dan hemoragik, namun 87% penderita
stroke adalah stroke iskemik. Sementara itu, jika pasien menderita stroke iskemik dan hal tersebut baru pertama kali
terjadi, maka penderita harus segera mungkin mendapatkan penanganan. Hal ini dikarenakan adanya golden period
pada penanganan stroke yaitu selama 4.5 jam, agar penderita dapat tertolong dan mengurangi risiko kematian atau
kecacatan permanen. Oleh karena itu, penting adanya deteksi dini, sehingga banyak penelitian yang dilakukan
khususnya di bidang teknologi untuk melakukan diagnosis otomatis guna membantu dokter. Machine learning dan
deep learning adalah metode yang sering digunakan karena kemampuannya memberikan hasil prediksi dengan akurasi tinggi. Pada penelitian ini penulis akan memberikan pembaruan dalam pendeteksian stroke iskemik berdasarkan CT scan pasien dengan mengganti peran neural networks untuk klasifikasi pada CNN dengan random forest, support vector machines and k-nearest neighbors. Berdasarkan metode yang dirancang, akurasi pada data training didapatkan 100% untuk RF dan SVM. Dalam validasi data, RF (94,07%) menghasilkan akurasi yang lebih tinggi pada nilai rata-rata dibandingkan dengan SVM (93,20%) dan kNN (79,01%).
......In Indonesia, stroke is a disease with the highest mortality rate, which ranks first for more than two decades, 1990-
2017. Stroke is divided into two types, ischemic and hemorrhagic, but 87% of stroke patients are ischemic stroke.
Meanwhile, if the patient suffers from an ischemic stroke and this is the first time it has happened, then the patient
should get treatment as soon as possible. This is because there is a golden period in stroke treatment, which is 4.5
hours, so that patients can be helped and reduce the risk of death or permanent disability. Therefore, early detection is important, so that a lot of research has been carried out, especially in the field of technology to carry out automatic diagnosis to help doctors. Machine learning and deep learning are methods that are often used because of their ability to provide predictive results with high accuracy. In this study, the authors will provide an update in the detection of ischemic stroke based on CT scans of patients by replacing the role of neural networks for classification on CNN with random forests, support vector machines and k-nearest neighbors. Based on the designed method, the accuracy of the training data is 100% for RF and SVM. In data validation, RF (94.07%) resulted in higher accuracy in the average value compared to SVM (93.20%) and kNN (79.01%)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rias Agnini Majdi
"Jenis-jenis alat musik yang digunakan dalam suatu musik adalah salah satu cara menjelaskan musik tersebut. Skripsi ini membahas penggunaan ekstraksi fitur MFCC dan metode klasifikasi k-NN untuk mengklasifikasi alat musik berdasarkan suara yang dihasilkannya. MFCC merupakan sebuah metode yang mampu mengolah sebuah data suara sehingga menghasilkan beberapa fitur yang bersifat numerik. k-NN merupakan sebuah metode klasifikasi yang menggunakan jarak dari fitur tiap-tiap observasi. Pengerjaan skripsi dilakukan dengan mengekstraksi fitur dari data-data suara yang tersedia dengan MFCC lalu menggunakan fitur-fitur yang diekstraksi tersebut untuk metode klasifikasi k-NN. Data yang digunakan adalah data suara alat musik yang tersedia pada dataset Philharmonia Orchestra Sound Samples. Hasil dari penerapan metode klasifikasi k-NN pada skripsi ini menunjukkan bahwa model k-NN mampu meraih nilai akurasi hingga 94,84%.



Instrumentation is one way to describe a music. This study discusses the use of MFCC feature extraction and k-NN classification method to classify instruments by the sound they produce. MFCC is a method capable of processing a sound data into a set of numeric features. k-NN is a classification method that uses the distance of the features of each observations. The process of this study uses MFCC to extract the features of available sound data and use these extracted features to fit a k-NN model. The data used in this study are the sound data available in the Philharmonia Orchestra Sound Samples dataset. The result of k-NN model fitting in this study shows that the model is capable of reaching an accuracy of 94.84%.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ramdhaidfitri Martmis
"ABSTRAK
Ketika manusia mengalami stres, tubuhnya akan memproduksi hormon stres serta menimbulkan respon fisiologis yang berkaitan dengan sistem saraf otonom atau autonomous nervous system (ANS). Salah satu respon fisiologis dari timbulnya stres pada tubuh yaitu meningkatnya variabilitas detak jantung atau heart rate variability (HRV). Data HRV merupakan beberapa feature yang didapatkan dari interval R-R yang berasal dari sinyal Electrocardiograph (ECG). HRV didapatkan dengan menggunakan analisis domain waktu dan analisis domain frekuensi. Dalam penelitian ini, akan dijelaskan mengenai pengembangan sistem pendeteksi stres berbasis detak jantung dengan menghitung dan membandingkan feature HRV berdasarkan analisis domain waktu dan frekuensi serta mengklasifikasikan feature tersebut dengan algoritma k-Nearest Neighbors (kNN). Sistem diimplementasikan pada perangkat Android dan juga Laptop. Hasil yang diperoleh yaitu feature HRV gabungan dari hasil analisis domain waktu dan frekuensi yang paling merepresentasikan stres dari detak jantung serta menghasilkan akurasi sebesar 79,17% menggunakan algoritma kNN pada Laptop dan akurasi sebesar 79,166% dari klasifikasi kNN pada aplikasi Android yang dibuat.

ABSTRACT
When humans deal with stress, they produce stress hormones which create physiological responses related to the autonomic nervous system (ANS). One of the physiological responses to stress in the body is a variation in heart rate or heart rate variability (HRV). HRV data are some features obtained from the R-R interval derived from Electrocardiograph (ECG) signals. HRV is obtained using time domain analysis and frequency domain analysis. In this study, we will discuss the development of a stress detection system based on heart rate by calculating and comparing HRV features from time and frequency domain analysis and classifying these features with the k-Nearest Neighbors (kNN) algorithm. The system is implemented on Android device and PC. The results obtained were combined HRV features from the results of time and frequency domain analysis are the best features to represent stress from heart rate with accuracy of 79,17% using the kNN algorithm on PC and accuracy of 79,166% from the kNN classification on Android application.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Tristika Mughni
"Tingkat kemacetan di Jakarta saat ini tergolong tinggi dan memiliki tren yang meningkat setiap tahu. Terdapat berbagai upaya yang dilakukan oleh pihak manajemen kemacetan untuk mengurangi kemacetan. Salah satu komponen yang perlu diperhatikan pada perencanaan upaya dalam mengurangi kemacetan adalah penemuan atribut yang memiliki pengaruh kepada tingkat kemacetan. Pendekatan machine learning (ML) pada beberapa tahun terakhir memberi hasil yang baik berdasarkan nilai metrik performa model. Maka, penelitian ini menggunakan algoritma ML, yaitu support vector machine (SVM), k-nearest neighbors (KNN), dan random forest (RF) untuk membangun model dalam memprediksi kemacetan serta menemukan faktor yang memiliki pengaruh terhadap kemacetan di ruas jalan. Variabel independen yang digunakan pada penelitian ini adalah jam, hari kerja, tanggal merah, curah hujan, ada tidaknya event, jam ganjil genap, volume motor, volume mobil, serta volume bus dan truk. Variabel dependen yang digunakan adalah tingkat kemacetan yang mewakili kecepatan rata-rata kendaraan di ruas jalan. Model dijalankan pada dua data, yakni pada data dengan variabel volume kendaraan dan data tanpa variabel kendaraan. Hasil penelitian menunjukkan model SVM, KNN, dan RF memberikan nilai akurasi, precision, recall, dan F1 score di atas 80% pada kedua data. Adapun faktor yang memiliki pengaruh kuat terhadap tingkat kemacetan terdiri dari jam dan jam ganjil genap pada data tanpa volume kendaraan serta volume motor, volume mobil, volume bus dan truk, jam, dan jam ganjil genap pada data dengan volume kendaraan.
......The level of congestion in Jakarta is currently high and has an increasing trend every year. There are various efforts made by congestion management to reduce congestion. One component that needs to be considered in planning efforts to reduce congestion is the discovery of attributes that have an influence on the level of congestion. Machine learning (ML) approaches in recent years have provided good results based on the value of model performance metrics. So, this study uses ML algorithms, namely support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF) to build a model to predict congestion and find factors that have an influence on congestion on road sections. The independent variables used in this study are hours, weekdays, red dates, rainfall, presence or absence of events, even odd hours, motorcycle volume, car volume, and bus and truck volume. The dependent variable used is the level of congestion, which represents the average speed of vehicles on the road. The model was run on two data, namely on data with vehicle volume variables and data without vehicle variables. The results showed that the SVM, KNN, and RF models provided accuracy, precision, recall, and f1 score values above 80% on both data. The factors that have a strong influence on the level of congestion consist of hours and even odd hours on data without vehicle volume and motorcycle volume, car volume, bus and truck volume, hours, and even odd hours on data with vehicle volume."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Nuraiman Hartono
"Brain-Computer Interface (BCI) merupakan sebuah sistem yang mampu menerjemahkan sinyal-sinyal otak menjadi perintah kepada berbagai devais keluaran. Teknologi ini kini sedang berkembang pesat terutama untuk keperluan rehabilitasi gerak bagi orang-orang yang telah kehilangan kemampuan geraknya. Dalam penelitian ini, dirancang sebuah sistem BCI yang mampu menerjemahkan sinyal otak seseorang ketika sedang melakukan pembayangan gerak (motor imagery) untuk gerakan tangan menggenggam dan membuka. Hasil terjemahan tersebut dapat digunakan untuk menggerakkan sebuah antarmuka yang membantu orang tersebut untuk bergerak menggenggam dan membuka tangan secara real-time. Sistem BCI ini menggunakan perangkat akuisisi data yang terdiri dari Raspberry Pi 4 dan ADS1299 Analog-to-Digital Converter. Sistem ini juga dikembangkan dengan menggunakan berbagai algoritma pemrosesan dan klasifikasi data, mulai dari Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, dan Random Forest. Akurasi hasil testing klasifikasi yang dilakukan oleh sistem ini bernilai 64,6% untuk mengklasifikasi 3 jenis pembayangan gerak (menggenggam, membuka, dan diam) menggunakan algoritma SVM serta 94,7% untuk klasifikasi 2 jenis pembayangan gerak (menggenggam dan membuka) menggunakan algoritma Random Forest.
......Brain-Computer Interface (BCI) is a system which can translate brain signals to command various output devices. This technology had been developing rapidly, especially for movement rehabilitation purposes for people with motoric disabilities. In this research, a BCI system has been developed which can translate one’s brain signals when one is imagining doing hand movement (motor imagery). The translation result can be used to drive an interface in real-time. This BCI system utilize an acquisition device, consisting of Raspberry Pi 4 and ADS1299 Analog-to-Digital Converter. Besides, this system has also been developed using several algorithms for processing and classifying data, namely Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, and Random Forest. Testing accuracy for this system yielded a 64.6% for classifying three types of motor imagery (hand grasping, hand opening, and resting) with SVM, and 94.7% for classifying two types of motor imagery (hand grasping and hand opening only) using Random Forest."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Valentinus Paramarta
"Semakin tinggi penetrasi penggunaan Internet seseorang, maka akan semakin berpotensi terkena Gangguan Adiksi Internet (GAI) yang dapat berdampak buruk pada status kesehatan mental penggunanya. Mayoritas penduduk Indonesia telah menggunakan layanan Internet selama 2 sampai 3 tahun dengan penggunaan rata-rata di atas 8 jam
perhari. Hal tersebut menunjukkan penggunaan Internet dan potensi dampaknya pada kesehatan mental di Indonesia penting untuk diperhatikan sedini mungkin. Penelitian lain menunjukkan bahwa tingkat kesehatan mental yang dialami seseorang dapat mempengaruhi perilaku penggunaan Internetnya, sehingga menyebabkan munculnya keinginan yang tidak terkendali dan berlebihan dalam pengaksesan Internet. Secara tidak langsung, hal tersebut menyatakan bahwa kesehatan mental seseorang juga dapat diamati melalui tingkah laku serta kebiasaan seseorang dalam menggunakan Internet. Prediksi GAI dan gangguan kesehatan mental mahasiswa UI dilakukan dengan menggunakan algoritma pemelajaran mesin Support Vector Machine (SVM) berdasarkan perilaku penggunaan Internet yang dilakukan. Sampel diambil dari mahasiswa UI rumpun Ilmu Saintek (Ilmu Komputer, Teknik, dan MIPA). Data yang diambil adalah riwayat penulusuran halaman website yang diakses oleh mahasiswa dan hasil kuesioner Internet addiction test (IAT) dan General Health Questionnaire (GHQ-12). Riwayat penelusuran website dijadikan himpunan fitur yang merepresentasikan perilaku penggunaan Internet responden, sedangkan hasil skor kuesioner IAT dan GHQ-12 digunakan untuk menjadi ground truth atau label pada dataset. Tahapan preprocessing yang dilakukan adalah metode Synthetic Minority Over-Sampling Technique (SMOTE) untuk mengatasi ketidak seimbangan persebaran data pada kelas data yang digunakan. Metode SVM selanjutnya dibandingkan dengan performa lainnya seperti Decision Tree dan k-Nearest Neighbor (kNN). Untuk meningkatkan performa akurasinya, peneliti menggunakan metode grid search untuk mendapatkan parameter terbaik. Proses validasi dilakukan menggunakan cross-validation pada metode grid search. Hasil yang didapatkan menunjukkan bahwa performa akurasi tertinggi pada SVM untuk memprediksi GAI adalah 88% pada dataset kedua. Saat dilakukan perbandingan hasil dengan metode pemelajaran mesin Decision Tree dan kNN, didapatkan performa nilai akurasi tertinggi dicapai pada metode Decision Tree dengan nilai akurasi sebesar 96%. Sedangkan untuk prediksi gangguan kesehatan mental, metode SVM mendapatkan nilai performa akurasi tertinggi sebesar 71% pada dataset gabungan. Saat dilakukan perbandingan hasil performa akurasi dengan Decision
Tree dan kNN, didapatkan nilai performa akurasi tertinggi dicapai pada metode kNN sebesar 72%. Hasil penelitian ini menunjukkan bahwa metode grid search meningkatkan performa SVM, Decision Tree, dan kNN karena adanya perubahan nilai parameter.
......Excessive internet usage lead to potential Internet Addiction Disorders (IAD) which affect user`s mental health. The mayority of Indonesian people have been used Internet services for 2 until 3 years in their lives with an average use of above 8 hours per day. It shows that an increase of internet usage has a positive potential impact to an increase in mental disorder. Other research shows that the level of mental health experienced by a person can influence his Internet usage behavior, thus causing an uncontrolled and excessive desire to access the Internet. It could be concluded that the mental health can also be observed through one`s behavior and habits in using the Internet. This study predicts the internet addiction disorder (IAD) and mental health disorder status of UI students by using machine learning based on Support vector Machine (SVM) algorithm. This study used behaviour of internet usage for the input. Samples used in this study were taken from Universitas Indonesia`s students with Science and Technology background. The data collection period was set before and after the exam period. Data collected in this study included history of website accessed by students and questionnaires based on Internet addiction test (IAT) and General Health Questionnaire (GHQ-12). Student`s website history would be used as feature data set that represent user internet usage behavior, while the IAT and GHQ-12 questionnaires results were used as the label. The preprocessing stage was carried out using Synthetic Minority Over-Sampling Technique (SMOTE) method to overcome the imbalance of data distribution in class used. Then, student`s website history would be analyzed using machine learning based on SVM algorithm to predict IAT and mental health status. This study also compared other algorithms such as Decision Tree and k-Nearest Neighbor (kNN). The optimization of machine learning model was conducted using grid search method to obtain the best
parameters. The validation of the model would be carried out using the cross-validation obtained from grid search method. Based on the results obtained, it shows that the highest accuracy for predicting internet addiction was obtained from SVM algorithm with 88% accuracy for the second dataset. Comparison with other models showed that Decision Tree obtained the highest accuracy value of 96% for predicting internet addiction. For the prediction of mental health disorder, SVM algorithm obtained the highest accuracy than Decision Tree or kNN. The SVM algorithm can predict with accuracy of 71% with combined dataset. When comparing the accuracy result with the accuracy of Decision Tree and kNN, the highest accuracy value of 72% was achieved by kNN method. The optimal value of accuracy is obtained when the grid search method is performed. The results of this study indicate that the grid search method has succeeded in improving the performance of SVM, Decision Tree, and kNN due to parameter value changes."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sen, Soumya
"This book offers an overview of audio processing, including the latest advances in the methodologies used in audio processing and speech recognition. First, it discusses the importance of audio indexing and classical information retrieval problem and presents two major indexing techniques, namely Large Vocabulary Continuous Speech Recognition (LVCSR) and Phonetic Search. It then offers brief insights into the human speech production system and its modeling, which are required to produce artificial speech. It also discusses various components of an automatic speech recognition (ASR) system."
Singapore: Springer Nature, 2019
e20506890
eBooks  Universitas Indonesia Library
cover
Steele, Brian
"This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses.
This book has three parts:
(a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter.
(b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System.
(c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials.
This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners."
Switzerland: Springer International Publishing, 2016
e20510037
eBooks  Universitas Indonesia Library
<<   1 2   >>