Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muh. Ardi Ramdani
"Berdasarkan standar prevalensi stunting yang ditetapkan oleh WHO, yaitu sebesar 20%,
tingkat prevalensi stunting di Indonesia masih cukup tinggi. Oleh sebab itu, pada tahun
2018 pemerintah menetapkan 100 kabupaten prioritas penurunan angka stunting.
Penentuan 100 kabupaten tersebut hanya didasarkan pada kriteria jumlah dan prevalensi
balita stunting yang dibobot dengan tingkat kemiskinan provinsi (desa-kota). Akibatnya,
akan tidak efektif apabila pemerintah memberikan alokasi APBN, APBD, dan perhatian
yang merata pada 100 daerah prioritas tanpa melihat kondisi pada masing-masing
kabupaten untuk indikator yang lain. Dengan demikian, diperlukan analisis
pengelompokan 100 kabupaten prioritas intervensi stunting pada tahun 2018 berdasarkan
pada indikator-indikator yang telah ditetapkan oleh Tim Nasional Percepatan
Penanggulangan Kemiskinan untuk melihat kondisi keparahan stunting. Analisis
pengelompokan ini diharapkan dapat dijadikan acuan bagi pemerintah dalam penentuan
kelompok kabupaten prioritas dan diharapkan pemerintah dapat mengambil kebijakan
yang tepat sesuai dengan kondisi masing-masing kelompok. Banyaknya observasi yang
digunakan adalah 100 kabupaten prioritas intervensi stunting tahun 2018 dengan terdapat
delapan variabel numerik dan enam variabel kategorik. Adapun metode yang digunakan
adalah metode Partitioning Around Medoids (PAM) dengan menggunakan Gower
distance yang mampu menangani pengelompokan pada tipe data campuran. Hasil dari
penelitian ini menunjukkan bahwa terbentuk lima kelompok kabupaten yang memiliki
karakteristik masing-masing. Diperoleh bahwa Cluster 5 memiliki kondisi yang relatif
paling buruk di antara cluster lainnya untuk setiap indikator, sehingga sebaiknya menjadi
kelompok kabupaten prioritas pertama dalam penanganan kasus stunting. Cluster yang
menjadi prioritas kedua adalah cluster 4, prioritas ketiga adalah cluster 2, dan prioritas
keempat adalah cluster 3. Cluster 1 memiliki kondisi yang relatif paling baik di antara
cluster lainnya, sehingga menjadi prioritas terakhir. Kabupaten-kabupaten yang berasal
dari Provinsi Papua dan Provinsi NTT secara garis besar merupakan kabupatenkabupaten
yang memiliki kondisi keparahan stunting yang buruk, dengan mayoritas
merupakan anggota cluster 2, cluster 4, dan cluster 5. Secara umum untuk lebih
meningkatkan upaya penurunan angka stunting pada 100 kabupaten prioritas, pemerintah
perlu mengoptimalkan upaya penurunan angka kemiskinan, meningkatkan proporsi
penduduk dengan perilaku BAB di jamban, meningkatkan akses masyarakat terhadap air
bersih dan akses masyarakat terhadap sanitasi yang baik, meningkatkan jumlah posyandu
per desa, dan meningkatkan ketersediaan jumlah dokter pada masing-masing kabupaten
......Based on the stunting prevalence standard set by WHO, which is 20%, the stunting
prevalence rate in Indonesia is still quite high. Therefore, in 2018 the government set 100
priority districts to reduce stunting rates. The determination of the 100 regencies only
based on the criteria of the number and prevalence of stunted children weighted by the
provincial (rural-urban) poverty rate. As a result, it will be ineffective if the government
allocates the state budget, regional budget, and equal attention to 100 priority areas
without looking at each district’s conditions for other indicators. Therefore, an analysis
of the 100 priority districts for stunting intervention needed in 2018 based on indicators
established by the National Team for the Acceleration of Poverty Reduction to see the
condition of the severity of stunting. This grouping analysis expected to use as a reference
for the government in determining priority district groups and expected the government
to take appropriate policies by each group’s conditions. The number of observations used
was 100 priority districts for stunting intervention in 2018 with eight numerical variables
and six categorical variables. The method used is the Partitioning Around Medoids (PAM)
method using a Gower distance that believed to handle grouping on mixed data types.
The results of this study indicate that five district groups formed that have their respective
characteristics. It found that cluster 5 had the relatively worst condition among the other
clusters for each indicator, so it should be the priority group in handling stunting cases.
The second priority cluster is cluster 4, the third priority is cluster 2, and the fourth priority
is cluster 3. Cluster 1 has the relatively best condition among other clusters, so it becomes
the last priority. Districts originating from Papua Province and East Nusa Tenggara
Province are generally districts that have reduced stunting severity, with the majority
being members of cluster 2, cluster 4, and cluster 5. In general, to further increase efforts
to reduce stunting rates at 100 priority districts, the government needs to optimize efforts
to reduce poverty, increase the proportion of the population with defecation behavior in
latrines, increase community access to clean water and community access to proper
sanitation, increase the number of posyandu per village, and increase the availability of
doctors in each district"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Guntoro
"Avian Influenza atau flu burung adalah jenis penyakit yang berasal dari virus H5N1. Penyakit ini menyebar dengan sangat cepat dan sangat potensial untuk menyebabkan kematian. Virus ini dapat menular melalui perantaraan unggas dan dapat menular dari unggas kepada manusia sehingga masyarakat Indonesia perlu berhati-hati dalam melakukan tindakan preventif dalam menghadapi penyakit flu burung ini.
Dengan beragamnya perbedaan perilaku masyarakat Indonesia, tentunya akan menyebabkan perbedaan pula dalam melakukan penyikapan menghadapi flu burung. Sebuah lembaga tertentu melakukan survey di beberapa provinsi di Indonesia dimana telah terjadi kasus penularan flu burung kepada manusia. Terdapat 60.016 responden dengan 19 variabel kategorik yang akan dilibatkan dalam penelitian. Berdasarkan data ini, dilakukan analisis data yang menghasilkan kesimpulan bahwa faktor-faktor yang mempengaruhi perilaku masyarakat dalam menyikapi flu burung adalah provinsi, jenis kelamin, pengetahuan mengenai penularan flu burung, sarana pembuangan, pemeliharaan unggas, kepemilikan binatang peliharaan dan jarak rumah ke pasar. Diantara faktor-faktor tersebut, faktor yang paling mempengaruhi perilaku masyarakat dalam menyikapi flu burung adalah pengetahuan mengenai penularan flu burung.
Profil masyarakat yang mempunyai perilaku baik dalam menyikapi flu burung adalah memiliki pengetahuan penularan FB yang baik, berasal dari provinsi Jambi dan Nusa Tenggara Barat, memiliki tempat penampungan air limbah, saluran pembuangan air limbah, tempat sampah diluar rumah, punya tempat penampungan sampah organik, tidak memiliki binatang peliharaan."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S27798
UI - Skripsi Open  Universitas Indonesia Library