Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Heru Kuntoro Ashadi
"Dengan kemajuan teknologi, peningkatan penggunaan penyimpanan energi yang begerak juga semakin bertambah. Salah satu bahan aktif yang digunakan dalam katoda baterai ion litium adalah LiFePO4. Dalam penelitian ini, telah dilakukan sintesis dan proses pemberian doping Na pada material katoda LiFePO4/C menjadi material komposit Li1-xNaxFePO4/C dengan (x = 0, 0,01, 0,02, 0,03, 0,04 dan 0,05) dilakukan dengan kombinasi proses reaksi kimia basah (wet chemical) dan padatan (solid state) pada temperatur kalsinasi 350oC selama 1 jam proses sintering 750oC selama 4 jam. Karakterisasi morfologi, struktur mikro dan komposisi dilakukan dengan menggunakan difraksi sinar-X (XRD) dan mikroskop elektron yang dilengkapi dengan pemindai komposisi (SEM/EDX), sedangkan karakterisasi elektrokimia dalam bentuk sel koin R2032 dilakukan dengan menggunakan voltametri siklik (CV), spektroskopi impedansi elektrokimia (EIS) dan pengisian dan pengosongan (Charge-Discharge). Hasil XRD menunjukkan bahwa semua sampel sesuai dengan LiFePO4/C standar dengan struktur olivine pada kondisi x = 0, sedangkan hasil SEM menunjukan bahwa ukuran partikel semua sampel adalah berkisar antara sekitar 1 sampai dengan 3 µm. Hasil uji CV menunjukkan bahwa doping Na jelas meningkatkan reversibilitas dan perilaku dinamis interkalasi dan deinterkalasi ion lithium. Hasil EIS menunjukkan bahwa doping Na mengurangi resistensi transfer pada material katoda LiFePO4/C dengan meningkatkan koefisien difusi ion lithium. Dapat disimpulkan dari semua karakteriasi material sampel dan sel koin bahwa doping Na dapat meningkatkan kinerja elektrokimia material katoda dengan hasil yang optimal pada x = 0,02 sampai 0,03.

With the advancement of technology, there is an increase use of mobile energy storage. One of the active materials used in lithium ion battery cathode is LiFePO4. In this work, synthesis and characterization of Li1-xNaxFePO4/C (x = 0, 0.01, 0.02, 0.03, 0.04 dan 0.05) composite has been carried out. The synthesis was performed via combination of wet chemical reaction processes to obtain FePO4 and continued with the process of mixing through solid state reaction method to form Li1-xNaxFePO4/C. In this work, nominal x ratio of sodium to lithium was varied from 0 to 5 wt.%. The calcination was carried out for 1 hour at 350 °C and continued with sintering at 750 °C for 4 hours under nitrogen environment. Morphological characterization and microstructure observation were performed using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD), respectively. The XRD results showed that the obtained active material has uniformity in comparison to the LiFePO4 standard with olivine structure for x = 0. With the addition of sodium, there is an indication that the peak shifted to the lower at the optimum angle. Observation on the morphology showed that the particle size of the obtained active material ranges from about 1 to 3 µm, whereas analysis on the composition showed consistent results. This is as an indication that the synthesis of Li1-xNaxFePO4/C composite has been carried out successfully. The CV test results show that Na doping increases the reversibility and dynamic behavior of lithium ion intercalation and deintercalation. The EIS results show that Na doping reduces transfer resistance in the LiFePO4/C cathode material by increasing the diffusion coefficient of lithium ions. It can be concluded from all the characteristics of the sample material and coin cell that Na doping can improve the electrochemical performance of the cathode material with optimal results at x = 0.02 to 0.03."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Zena Stitya Rosenta
"Pada penelitian ini, nanopartikel Li3PO4, Fe3(PO4)2, LiFePO4 sampel A telah berhasil disintesis menggunakan ekstrak daun delima (Punica granatum L) dengan metode green synthesis dan nanopartikel LiFePO4 sampel B telah berhasil disintesis dengan metode kimia (sol-gel). Ekstrak daun delima (EDD) yang dihasilkan mengandung senyawa metabolit sekunder yang berfungsi sebagai sumber basa dan capping agent dalam menstabilkan ukuran nanopartikel dan mencegah terjadinya proses aglomerasi. Hasil karakterisasi FTIR menunjukkan bahwa LiFePO4 sampel A dan B membentuk serapan vibrasi (v2-v4) PO43- pada bilangan gelombang 586 cm-1 - 461 cm-1 (v4 & v2) dan 1038/1035 cm-1 (v3). Pada hasil XRD menunjukkan nanopartikel LiFePO4 sampel A dan B memiliki sistem kristal orthorombik. Hasil SEM menunjukkan morfologi LiFePO4 memiliki bentuk yang heterogen. Nanopartikel LiFePO4 yang telah disintesis kemudian dijadikan sebagai lembaran katoda dan disusun menjadi baterai ion litium kemudian dilakukan karakterisasi elektrokimia menggunakan EIS, CV dan GCD. Hasil uji GCD menunjukkan bahwa sampel A memiliki kapasitas discharge sebesar 0,35 mAH/gram sedangkan sampel B memiliki kapasitas discharge sebesar 0,93 mAH/gram.

In this research, Li3PO4, Fe3(PO4)2, LiFePO4 nanoparticles sample A have been successfully synthesized using pomegranate leaf extract (Punica granatum L) with green synthesis method and LiFePO4 nanoparticle sample B have also been successfully synthesized by chemical method (sol-gel). Pomegranate leaf extract (EDD) produced contains secondary metabolite compounds that function as a source of base and capping agent in stabilizing the size of nanoparticles and preventing agglomeration. The results of FTIR characterization shows that the LiFePO4 nanoparticles of samples A and B forms vibrational absorption (v2-v4) PO43- at wavenumbers 586-461 cm-1 (v4 & v2) and 1038/1035 cm-1 (v3). The XRD results show that the LiFePO4 nanoparticles of samples A and B have an orthorhombic crystal system. SEM results show that the morphology of LiFePO4 has a heterogeneous shape. The LiFePO4 nanoparticles that were formed were successfully used as cathode sheets and arranged into lithium ion batteries then electrochemical characterization was carried out using EIS, CV and GCD. The GCD test results show that sample A has a discharge capacity of 0,35 mAH/gram while sample B has a discharge capacity of 0,93 mAH/gram."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiona Angellinnov
"Nickel manganese cobalt (NMC) merupakan salah satu material yang banyak digunakan sebagai katoda baterai ion litium. NMC merupakan perpaduan dari nikel, mangan, dan kobalt dengan rasio tertentu. Dibandingkan jenis lain, NMC 811 (LiNi0,8Mn0,1Co0,1O2) memiliki kapasitas yang tinggi, harga murah, lebih aman karena tidak beracun dan lebih ramah lingkungan. Meskipun demikian, tingginya kadar nikel pada NMC 811 akan berdampak pada penurunan kapasitas, rate capability yang buruk, dan ketidakstabilan termal dan struktur. Salah satu cara untuk menanggulangi hal tersebut yaitu dengan mengoptimalkan metode preparasi, melakukan doping dan coating pada permukaan NMC. Pada penelitian ini digunakan metode solution-combustion synthesis untuk mensintesis NMC 811 dan NMC 811 doping Sn (LiNi0,8Mn0,1Co0,1-xSnxO2 dengan x = 0,01, 0,03, 0,05). Selain itu, juga dilakukan coating dengan karbon aktif dari arang sekam padi dengan variasi 1, 3, 5 wt.% untuk memperoleh LiNi0,8Mn0,1Co0,1O2/C dan LiNi0,8Mn0,1Co0,1-xSnxO2/C. Karakterisasi bahan dilakukan dengan menggunakan infra merah (Fourier transform infrared, FTIR) untuk mengetahui gugus fungsi, difraksi sinar-X (X-ray diffraction, XRD) untuk melihat struktur kristal, mikroskop electron (field emission scanning electron microscopy, FE-SEM) yang dilengkapi energy dispersive X-ray spectroscopy (EDX) untuk melihat topografi permukaan dan komposisinya, dan Brunauer Emmett Teller (BET) untuk melihat luas permukaan dan pori yang terbentuk. Uji performa baterai dengan katoda material aktif dilakukan menggunakan electrochemical impedance spectroscopy(EIS). Hasil penelitian memperlihatkan bahwa variasi Sn paling baik diberikan oleh x=0,03 (LiNi0,8Mn0,1Co0,07Sn0,03O2) dengan konduktivitas sebesar 2,4626 x 10-5 S/cm. Variasi karbon terbaik diberikan oleh konsentrasi 5 wt.% (LiNi0,8Mn0,1Co0,1/C) dengan konduktivitas 31,9024 x 10-5 S/cm. Dibandingkan dengan NMC 811 tanpa modifikasi yang menunjukkan konduktivtas sebesar 1,5951 x 10-5, modifikasi dengan Sn dan karbon aktif memberikan hasil yang lebih baik.

Nickel manganese cobalt (NMC) is a widely used active material for lithium-ion battery cathode. NMC is a combination of nickel, manganese, and cobalt with a certain ratio. NMC 811 has high capacity, low cost, less toxic and more environmentally friendly compared to the other NMC type. However, its high nickel content leads to capacity decay, poor rate capability, thermal and structural instability. Many efforts have been explored by many investigators to eliminate the drawbacks by optimizing the preparation method, using dopant, and surface coating. In this work, solution-combustion synthesis was used to synthesize NMC 811 and Sn-doped NMC 811 (LiNi0.8Mn0.1Co0.1-xSnxO2 with x = 0.01, 0.03, 0.05). Coating with activated carbon derived from rice husk was also performed with variation 1, 3, 5 wt.%) to obtain LiNi0.8Mn0.1Co0.1O2/C and LiNi0.8Mn0.1Co0.1-xSnxO2/C. Characterization was performed using Fourier transform infrared (FTIR) for the functional groups, X-ray diffraction (XRD) for crystal structure, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (FE-SEM/EDX) for surface topography and composition, and Brunauer Emmett Teller (BET) for surface area and pores formation. Performance of the active material as lithium-ion battery cathode was examined using electrochemical impedance spectroscopy (EIS). The results showed that the best performance from Sn doping was obtained from x=0.03 (LiNi0.8Mn0.1Co0.07Sn0.03O2) with the conductivity of 2.4626 x 10-5 S/cm. Meanwhile, coating with activated carbon 5 wt.% (LiNi0.8Mn0.1Co0.1O2/C) provided the highest conductivity of 31.9024 x 10-5 S/cm compared to the other variations. These results are better than the conductivity of NMC 811 with no modification (1.5951 x 10-5 S/cm)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library