Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Nori Wilantika
"Setiap perguruan tinggi di Indonesia bertanggung jawab atas kelengkapan, kebenaran, ketepatan, dan kemutakhiran data pendidikan tinggi di perguruan tinggi masing-masing. Data pendidikan tinggi digunakan untuk pelaksanaan sistem penjaminan mutu pendidikan tinggi dan digunakan sebagai landasan dalam penyusunan kebijakan terkait program studi dan perguruan tinggi di Indonesia. Hasil pengukuran kualitas data menunjukkan bahwa terdapat permasalahan pada data pendidikan tinggi di Politeknik Statistika STIS yaitu belum memenuhi kriteria kelengkapan, kebenaran, ketepatan, dan kemutakhiran. Pengukuran tingkat kematangan manajemen kualitas data telah dilakukan dengan menggunakan Loshins Data Quality Maturity Model dimana hasilnya berada pada kisaran level 1 dan 2. Hanya komponen dimensi kualitas data yang telah mencapai target yang diharapkan.
Untuk itu, rekomendasi disusun berdasarkan kerangka kerja DAMA-DMBOK. Adapun aktivitas yang perlu dilakukan adalah mengembangkan dan mempromosikan kesadaran terhadap kualitas data; mendefinisikan kebutuhan kualitas data; melakukan profiling, analisis, dan penilaian kualitas data; mendefinisikan aturan bisnis (business rules) kualitas data; menetapkan dan mengevaluasi tingkat layanan kualitas data (data quality service levels); mengelola permasalahan terkait kualitas data; merancang dan mengimplementasikan operasional prosedur untuk manajemen kualitas data; dan memantau operasional dan performa prosedur manajemen kualitas data.

Every varsity in Indonesia is responsible for ensuring the completeness, the validity, the accuracy, and the currency of its educational data. The educational data is used for the implementation of the higher-education quality assurance system and is used as a basis to formulate policies related to universities and majors in Indonesia. Data quality assessment result indicates that educational data in Statistics Polytechnic STIS did not meet completeness, validity, accuracy, and currency criteria. Data quality management maturity has been measured using Loshins Data Quality Maturity Model which the result are in level 1 to level 2 of maturity. Only data quality dimensions component has achieved the expected target.
Thus, recommendations have been proposed based on the DAMA-DMBOK framework. The activities needed to be carried out are developing and promoting awareness of data quality; defining data quality requirements; profiling, analyzing, and evaluating data quality; define business rules for data quality, establish, and evaluate the data quality services levels, manage problems related to data quality, design and implement operational procedures for data quality management, and monitor operations and performance of data quality management procedures.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Albert Kurniawan
"ABSTRAK
Dalam era informasi saat ini, data menjadi sumber daya yang vital dan menjadi kebutuhan yang memasuki level sangat penting untuk organisasi. Data yang berkualitas baik akan menghasilkan informasi yang bermanfaat untuk kemajuan organisasi. Data profil pelanggan berdasarkan aktifitas digitalnya atau dikenal dengan broadband customer profile BCP merupakan salah satu strategi Telkomsel untuk menciptakan peluang baru dalam rangka meningkatkan revenue. Dengan berjalannya platform BCP selama dua tahun lebih, data BCP mempunyai kondisi kualitas data yang rendah. Hal ini menjadi perhatian manajemen mengingat pentingnya data ini, sehingga dibutuhkan pengelolaan kualitas data yang baik.Penelitian ini dilakukan untuk memberikan rekomendasi strategi data quality management untuk meningkatkan kualitas data berdasarkan penilaian tingkat kematangan pengelolaan kualitas data menggunakan Data Quality Framework dari David Loshin, praktik manajemen kualitas data Data Management Body of Knowledge DMBOK dari DAMA institute, dan Big Data Quality Assessment dari Cai dan Zhu. Penelitian menggunakan metode kualitatif dengan melakukan wawancara ke tiga orang narasumber di bagian pengelolaan data BCP dan data governance di PT. Telkomsel, hasil yang didapatkan dari wawancara diolah dengan menggunakan metode data reduction dan data coding.Tingkat kematangan kualitas data diperoleh secara umum berada pada level 2 repeatable . Berdasarkan beberapa kesenjangan dari harapan yang ada, diperlukan strategi untuk meningkatkan kualitas data dari aktivitas manajemen kualitas data DMBOK. Rekomendasi strategi yang dihasilkan, yaitu: pertemuan komite DG secara berkala, evaluasi peran data steward, sosialisasi KD DG secara berkala untuk promosi data quality awareness, penambahan informasi kebutuhan secara detail dan analisis dampak bisnis di dokumen request report/data, penerapan master data management dan metadata management, penambahan proses validasi dan prosedur pemeriksaan data untuk tiap dimensi kualitas data, menetapkan SLA kualitas data, evaluasi kinerja incident tracking system, laporan kualitas data secara berkala, dan evaluasi pengelolaan data secara regular.

ABSTRACT
In this information era, data has become a vital resource and a necessity that enters a very important level for the organization. Good data quality will produce useful information for organization. Customer profile data based on digital activity or known as broadband customer profile BCP is one of Telkomsel 39 s strategy to create new opportunities in order to increase revenue. With the running of BCP platform over the next two years, BCP data has low data quality conditions. This is a concern of management given the importance of this data, so that required good data quality management.This research was conducted to give recommendation of data quality management strategy to improve data quality based on the assessment of data quality management maturity level using Data Quality Framework from David Loshin, data quality management practices Data Management Body of Knowledge DMBOK from DAMA institute, and Big Data Quality Assessment From Cai and Zhu. This research use qualitative method by conducting interviews to three interviewees in the data management section of BCP and data governance at PT. Telkomsel, the results obtained from interviews processed using data reduction and data coding methods.The maturity level of data quality is generally found at level 2 repeatable . Based on some gaps in existing expectations, strategies are needed to improve data quality from DMBOK data quality management activities. Recommendations of the strategies are regular meetings of DG committees, evaluation of steward data roles, regular socialization of KD DGs for promotion of data quality awareness, detail information of needs and business impact analysis in document request report data, implementation of master data management and metadata management, additional validation process and data checking procedures for each data quality dimension, establishing data quality SLA, incident tracking system performance evaluation, regular data quality reporting, and regular data management evaluation."
2017
TA-Pdf;
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rela Sabtiana
"Badan Pusat Statistik Kabupaten Kaur merupakan satuan kerja di bawah Badan Pusat Statistik Republik Indonesia yang bertanggung jawab melaksanakan kegiatan statistik di wilayah Kabupaten Kaur Provinsi Bengkulu. Meskipun Badan Pusat Statistik Kabupaten merupakan satuan kerja terkecil di bawah Badan Pusat Statistik Republik Indonesia, namun Badan Pusat Statistik Kabupaten menyumbang peran besar dalam pencapaian tujuan Badan Pusat Statistik untuk meningkatkan kualitas data. Hal ini disebabkan oleh peran Badan Pusat Statistik Kabupaten sebagai tombak dalam pengumpulan data langsung ke responden dan sekaligus sebagai pengolah dan diseminasi data. Sebagai contoh adalah pelaksanaan Survei Sosial Ekonomi Nasional yang tengah berlangsung pada semester I tahun 2019 saat penyusunan penelitian ini. Dari survei ini diperoleh permasalahan yaitu terdapat ketidaklengkapan, ketidakkonsistenan isian dan ketidaktepatan harga pada Modul Kor dan Konsumsi Pengeluaran saat entri data dalam aplikasi. Begitu pula saat pasca entri masih ditemukan ketidakkonsistensian dan ketidaktepatan isian. Untuk mengatasi permasalahan ini dilakukan evaluasi tingkat kematangan manajemen kualitas data menggunakan kerangka kerja Manajemen Kualitas Data Loshin. Hasil yang diperoleh menunjukkan bahwa tingkat kematangan berada pada kisaran 2 dan 3. Dari delapan dimensi, terdapat empat dimensi yang belum memenuhi target yang diharapkan yaitu harapan kualitas data, protokol kualitas data, standar data, dan teknologi. Selain itu, hasil dari pengukuran kualitas data statistik menggunakan kerangka kerja European Statistical System menunjukkan bahwa total skor yang dicapai adalah 5.7 dari target yang diharapkan sebesar 9.4. Dari hasil penelitian ini selanjutnya disusun rekomendasi peningkatan kualitas data.

The BPS-Statistics of Kaur Regency is a work unit under the BPS-Statistics of the Republic of Indonesia which is responsible for carrying out statistical activities in the regency area, precisely the Regency of Kaur, Bengkulu Province. Although the Regency Statistics Agency is the smallest work unit, the BPS-Statistics of Kaur Regency contributes a large role in achieving the goals of the BPS-Statistics of Republic of Indonesia to improve data quality. This is due to the role of the Regency Statistics Agency as a spearhead in collecting data directly to respondents and at the same time as data processors. An example is the implementation of the National Socio-Economic Survey which was taking place in the first semester of 2019 during the preparation of this study. From this survey, there are problems, namely there are incompleteness, inconsistency in the contents and inaccuracy of the price range in the Cor Module and Expenditure Consumption during data entry in the application. Likewise, inconsistencies and inaccuracies are found after post entries. To overcome this problem, an evaluation of the maturity level of data quality management using the Loshin’s Data Quality Management was done. The results indicate that the maturity level is in the range of 2 and 3. Of the eight dimensions, there are four dimensions that have not met the expected targets, namely expectations of data quality, data quality protocols, data standards, and technology. In addition, the results of measuring the quality of statistical data using the European Statistical System indicate that the total score achieved is 5.7 of the expected target of 9.4. From the results of this study, recommendations were made for improving data quality."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Eka Ayu Puspitaningrum
"ABSTRAK
Permasalahan berdasarkan temuan Badan Pemeriksa Keuangan (BPK) atas pemeriksaan kinerja pelayanan perizinan di Kementerian Komunikasi dan Informatika (KOMINFO) adalah data sertifikasi alat dan perangkat telekomunikasi pada database sistem informasi e-sertifikasi belum sepenuhnya lengkap, akurat, dan valid dalam mendukung pelayanan sertifikasi alat dan perangkat telekomunikasi. Dengan ketidaklengkapan tersebut memberi risiko terjadinya penerimaan yang tidak sah dan tidak valid atas perolehan biaya sertifikasi. Sehingga belum dapat dimanfaatkan secara optimal untuk keperluan pelaporan ataupun rekonsiliasi data. Berdasarkan kondisi tersebut dilakukan pengukuran tingkat kematangan manajemen kualitas data. Narasumber dalam penelitian ini adalah pejabat di Direktorat Standardisasi Perangkat Pos dan Informatika (PPI) yang menangani proses sertifikasi alat dan perangkat telekomunikasi, pejabat di Direktorat Pengendalian Sumber Daya dan Perangkat Pos dan Informatika (SDPPI) yang mengelola database dan sistem informasi e-sertifikasi, serta staf programmer e-sertifikasi. Pengukuran tingkat kematangan manajemen kualitas data dilakukan dengan menggunakan framework Modelo Alarcos de Mejora de Datos (MAMD) 2.0 dimana hasilnya berada pada level 1, sedangkan level yang diharapkan adalah level 2. Untuk itu strategi peningkatan kualitas data sertifikasi alat dan perangkat telekomunikasi disusun berdasarkan analisis penyebab permasalahan data, kesenjangan dari kondisi manajemen kualitas data saat ini dan harapan, pedoman sekretaris jenderal kementerian kominfo nomor 1 tahun 2018 serta Peraturan Menteri Komunikasi Dan Informatika Nomor: 41/PER/MEN.KOMINFO/11/2007 tentang Panduan Umum Tata Kelola Teknologi Informasi Dan Komunikasi Nasional. Rekomendasi yang dihasilkan dikelompokkan dalam delapan poin disiplin data yang perlu dilaksanakan Direktorat Standardisasi PPI apabila ingin mencapai tingkat kematangan manajemen kualitas data yang diinginkan. Delapan poin disiplin data tersebut diantaranya adalah manajemen persyaratan data, manajemen infrastruktur teknologi, manajemen konfigurasi, manajemen data historis, manajemen keamanan data, kontrol dan pemantauan kualitas data, manajemen siklus hidup data, serta definisi standar, kebijakan dan prosedur.

ABSTRACT
The problem based on the findings of the Supreme Audit Agency (BPK) on licensing performance checks at the Ministry of Communication and Information Technology (KOMINFO) is that the certification data of telecommunication tools and equipment in the e-certification information system database is incomplete, accurate and valid in supporting equipment and equipment certification services telecommunication. With incompleteness submitted, the approval of acceptance is invalid and invalid on the approval of the certification fee. Data that cannot be utilized optimally for the purpose of reconciliation reporting. Based on these conditions, the level of maturity of data quality management is measured. The speakers in this study were officials at the Directorate of Standardization (PPI) who requested the process of certification of telecommunications equipment and equipment, officials in the Directorate of Resources and Equipment of Post and Informatics Control who manage e-certification database and information systems, and e-certification programmer staff. The measurement of the level of maturity of data quality management is carried out using the Modelo Alarcos de Mejora de Datos (MAMD) 2.0 framework where the results depend on level 1, while the expected level is level 2. For this reason, strategies to improve the quality of certification data for the tools and devices used for needs analysis The problem of data, discusses current data management problems and expectations, guidelines for the secretary general of the Ministry of Communication and Information Number 1 of 2018 as well as Minister of Communication and Information Technology Regulation Number 41 / PER / MEN.KOMINFO / 11/2007 concerning General Guidelines for Technology Governance National Information and Communication. The recommendations produced are grouped in several data discipline points that need to be implemented by the Directorate of Standardization PPI agreeing to reach the desired level of data quality management maturity. These eight data discipline points are approved are data requirements management, technology infrastructure management, configuration management, historical data management, data security management, data quality control and control, data lifecycle management, as well as standard resolutions, policies and procedures."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library