Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Iqbal Zidan
Abstrak :
Konsumsi rokok menjadi salah satu isu kesehatan global terbesar di dunia. Organisasi Kesehatan Dunia (WHO) memperkirakan sekitar 1,3 miliar penduduk di seluruh dunia menggunakan produk tembakau. Indonesia juga menempati peringkat ketiga tertinggi jumlah perokok aktif terbanyak di dunia. Tembakau tidak hanya berbahaya bagi yang menggunakannya, tetapi juga berbahaya bagi yang terpapar asapnya. Orang dapat merokok sembarangan dengan mudah jika pengawasan terhadap penggunaan rokok longgar atau bahkan tidak ditegakkan. Untuk mengatasi permasalahan rokok, berbagai penelitian telah dikembangkan, termasuk metode pengenalan orang yang sedang merokok. Berbagai perangkat pencitraan digunakan untuk mendeteksi aktivitas manusia, termasuk merokok. Dengan pesatnya perkembangan kecerdasan buatan dan deep learning dalam beberapa dekade terakhir, termasuk computer vision, berbagai metode telah dikembangkan untuk mendeteksi orang yang sedang merokok. Salah satu metode tersebut adalah MobileNetV3, yang merupakan salah satu arsitektur Convolutional Neural Network (CNN). MobileNetV3 dikembangkan khusus untuk penggunaan pada aplikasi peranti bergerak dan sistem tanam karena sifatnya yang ringan komputasi. Penelitian ini bertujuan untuk mengembangkan sistem deteksi orang sedang merokok berbasis computer vision menggunakan MobileNetV3. Pada arsitektur sistem, layer dropout digunakan untuk mengatasi masalah overfitting sehingga performa model meningkat. Dataset yang digunakan berasal dari Mendeley Data dan Kaggle yang merupakan kumpulan citra orang yang sedang merokok masing-masing sejumlah 2410 citra dan 3275 citra. Melalui simulasi menggunakan konfigurasi dropout senilai 0,5, perbandingan proporsi dataset training : validasi : training menjadi 80 : 10 : 10, model berhasil memperoleh performa terbaik dengan nilai akurasi sebesar 92,08%, nilai loss sebesar 22,87%, nilai presisi sebesar 93,16%, dan nilai recall sebesar 90,83%. Akurasi ini lebih baik dari penelitian Junlong Tang et al. dengan YOLOv5s yang menghasilkan akurasi 85,6% ......Cigarette consumption is one of the most significant global health issues. The World Health Organization (WHO) estimates that around 1.3 billion people worldwide use tobacco products. Indonesia also ranks third with the world's highest number of active smokers. Tobacco is not only dangerous for those who use it but also for those exposed to the smoke. People can smoke indiscriminately if controls on cigarette use are lax or even not enforced. Various studies have been developed to overcome the problem of smoking, including methods of identifying people who smoke. Different imaging devices are used to detect human activities, including smoking behavior. With the rapid development of artificial intelligence and deep learning in recent decades, including computer vision, various methods have been developed to detect smoking people. One such method is MobileNetV3, one of the Convolutional Neural Network (CNN) architectures. MobileNetV3 was explicitly developed for mobile applications and embedded systems because of its computationally lightweight nature. This study aims to create a computer vision-based smoking detection system using MobileNetV3. In the system architecture, the dropout layer is used to overcome the problem of overfitting so that model performance increases. The datasets used are from Mendeley Data and Kaggle, a collection of images of smoking people, a total of 2410 and 3275 images, respectively. Through simulation using a dropout configuration of 0.5, the proportion of the training dataset: validation: training to 80: 10: 10, the model managed to obtain the best performance with an accuracy value of 92.08%, a loss value of 22.87%, a precision value of 93.16%, and the recall value is 90.83%. This accuracy is better than previous studies by Junlong Tang et al. with YOLOv5s, which resulted in an accuracy of 85.6%
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zafir Rasyidi Taufik
Abstrak :
Coronavirus Disease 2019 (COVID-19) merupakan sebuah penyakit yang disebabkan oleh novel coronavirus SARS-CoV-2. Penyakit yang berasal dari Provinsi Hubei di China ini sudah menyebar ke seluruh dunia, menjangkiti banyak hingga seluruh negara di dunia. Sudah menginfeksi kurang lebih 400 juta jiwa di seluruh dunia pada pertengahan kuartal pertama tahun 2022. Mencegah penyebaran COVID-19 merupakan tindakan yang harus segera dilakukan, salah satu caranya adalah dengan pendeteksian sedini mungkin. Pendeteksian COVID-19 selain menggunakan metode kedokteran, dapat dipertimbangkan mengenai penggunaan artificial intelligence. Penelitian mengenai metode pendeteksian COVID-19 menggunakan citra X-Ray yang telah dilakukan oleh Dhita menuai hasil yang cukup sukses. Menambahkan penelitian tersebut, kami melakukan metode pendeteksian menggunakan citra CT Scan. Beberapa penelitian mengenai pendeteksian COVID-19 menggunakan citra CT Scan seperti Tang et al. meneliti mengenai segmentasi citra CT Scan terhadap daerah local lesi terindikasi COVID-19 atau Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei juga melakukan penelitian sebelumnya mengenai pengklasifikasian pasien COVID-19 menggunakan citra CT Scan dengan mendapatkan hasil 90% akurasi dengan menggunakan metode FPN. ......Coronavirus Disease 2019 (COVID-19) is a disease caused by the novel coronavirus SARS-CoV-2. This disease which originates from the Hubei Province in China has already spread throughout the world, reaching many if not all countries in the world. There have been more than 400 million people infected across the globe as of the first quarter of 2022. Prevention of the spreading of the disease is very important, and one of the best ways to do so is to detect its infection as soon as possible. Aside from asking a doctor, the task of detecting COVID-19 using artificial intelligence has been considered. The research done by Dhita to detect COVID-19 using X-ray images has been seen as a success. Adding to that, we attempt to detect COVID-19 using CT Scan images. A couple research papers about detecting COVID-19 using CT Scan images such as the ones done by Tang et al. tried to segment CT Scan images related to the lesions that indicate COVID-19 or Pneumonia. Rahimzadeh, Attar, and S. M. Sakhaei also conducted research related to classifying COVID-19 patients using CT Scan images and found success at 90% accuracy with an FPN model.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library