Ditemukan 1 dokumen yang sesuai dengan query
Azizah Awaliah
"Regresi Poisson sering digunakan untuk menganalisis data diskrit count data. Regresi ini memiliki asumsi equidispersi. Namun, dalam banyak kasus sering dijumpai asumsi tersebut tidak terpenuhi karena adanya overdispersi pada data. Salah satu penyebab overdispersi adalah excess zero. Model regresi yang dapat digunakan untuk mengatasi masalah tersebut adalah regresi Zero-Inflated Poisson ZIP . Regresi ZIP menyelesaikan masalah excess zero dengan mengidentifikasi structural zeros di tahap pertama dan model Poisson counts di tahap kedua. Pada penelitian ini, parameter regresi ditaksir menggunakan metode Bayesian. Pada metode Bayesian, unsur ketidakpastian parameter dipertimbangkan model dalam bentuk distribusi prior. Dengan mengombinasikan distribusi prior dan likelihood, diperoleh distribusi posterior dari parameter yang menjadi perhatian dalam penelitian. Teknik komputasional Markov Chain Monte Carlo-Gibbs Sampling MCMC-GS digunakan untuk melakukan sampling nilai-nilai parameter dari distribusi posterior tersebut. Metode ini kemudian diterapkan untuk memodelkan frekuensi komplikasi motorik pada 215 penderita penyakit Parkinson. Diperoleh hasil bahwa total skor MDS-UPDRS Part 2 dan 3 berasosiasi dengan konsumsi atau tidaknya obat-obatan pada pasien. Lebih lanjut, untuk mereka yang mengonsumsi obat, total skor MDS-UPDRS Part 1 berasosiasi dengan frekuensi komplikasi motorik.
......Poisson regression is commonly used for analizing count data. This method requires equidispersion assumption. However, in the case of overdispersion, this assumption is not always fulfilled. Overdispersion may exist when there is excess zeros in the data. One of the regression models which might solve it is Zero Inflated Poisson ZIP regression. ZIP regression solves the excess zero problem by identifying the structural zeros at the first stage, then Poisson counts model at the second stage. In this research, the regression parameters are estimated using Bayesian method. Bayesian method acomodates the uncertainty parameters through prior distribution. Combining the prior distribution and likelihood from the data results in the posterior distribution of the parameters of interest. True parameters are then sampled using Markov Chain Monte Carlo Gibbs Sampling MCMC GS. Therefore, this method is applied to model the frequency of motor complications in 215 Parkinson 39 s disease patients. The result shows that total score of MDS UPDRS Part 2 and 3 associated with those taking the medicines or not. Furthermore, for those taking the medicines, total score of MDS UPDRS Part 1 associated with motor complications frequency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library