Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
White, Ron
New York: Prentice Hall International English Language Teaching , 1994
428.84 WHI w
Buku Teks  Universitas Indonesia Library
cover
Kuwing, Miss Aseeyah. author
Abstrak :
ABSTRACT
Penelitian ini bertujuan untuk mendeskripsikan wujud interferensi fonologi bahasa Melayu Pattani dalam berbahasa Indonesia mahasiswa Thailand di Universitas Muhammadiyah Surakarta. Jenis penelitian ini adalah deskriptif kualitatif. Sumber data penelitian ini adalah mahasiswa Thailand di Universitas Muhammadiyah Surakarta. Teknik pengumpulan data dilakukan dengan cara simak, rekam, dan wawancara. Teknik analisis data menggunakan metode padan jenis translasional dan metode analisis kontrastif. Ada satu hal yang perlu disampaikan pada penelitian ini. Wujud interferensi fonologi bahasa Melayu Pattani dalam berbahasa Indonesia mahasiswa Thailand di Universitas Muhammadiyah Surakarta, yang ditemukan tiga jenis interferensi. (a) Interferensi fonologi fonologi terdapat pada unsur penggantian fonem, pelesapan fonem,penggantian suku kata, dan pelesapan suku kata. (b) Interferensi leksikon terdapat pada kata benda, kata kerja, kata sifat, kata ganti, kata penunjuk, kata keterangan, kata depan, dan kata tanya.(c)Interferensi sintaksis terdapat pada jenis kalimat berita, kalimat tanya, dan kalimat perintah
Mataram: Badan Pengembangan dan Pembinaan Bahasa, 2017
400 MBSN 11:1 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Hansel Tanuwijaya
Abstrak :
Mesin penerjemah merupakan alat penerjemah otomatis pada sebuah teks dari satu bahasa ke bahasa lainnya. Tujuan dari mesin penerjemah adalah dapat membuat orang ? orang yang berasal dari berbagai budaya, yang memiliki bahasa yang berbeda, dapat berkomunikasi satu sama lain dengan mudah. Mesin penerjemah statistik adalah sebuah pendekatan mesin penerjemah dimana hasil terjemahan dihasilkan atas dasar model statistik yang parameter-parameternya diambil dari hasil analisis korpus teks bilingual (atau paralel). Penelitian di bidang mesin penerjemah statistik untuk Bahasa Inggris ? Bahasa Indonesia belum terlalu mendapat perhatian. Kualitas hasil terjemahan Bahasa Inggris ? Bahasa Indonesia tersebut masih jauh dari sempurna dan memiliki nilai akurasi yang rendah. Diawali dari permasalahan ini, munculah sebuah ide untuk membuat aturan-aturan restrukturisasi teks pada Bahasa Inggris sesuai dengan struktur Bahasa Indonesia dengan tujuan untuk meningkatkan kualitas dan nilai akurasi hasil terjemahan mesin penerjemah statistik. Aturan restrukturisasi teks tersebut bisa berupa word reordering, phrase reordering, ataupun keduanya. Dalam penelitian ini penulis merancang 7 buah aturan word reordering, 7 buah aturan phrase reordering dan 2 buah aturan gabungan phrase reordering dan word reordering. Penelitian dilakukan dengan menggunakan Stanford POS Tagger, Stanford Parser, dan MOSES. Stanford POS Tagger digunakan dalam tahap word reordering, Stanford Parser dalam tahap phrase reordering, dan MOSES dalam tahap penerjemahan. Hasil eksperimen menunjukkan peningkatan akurasi dan kualitas penerjemahan yang efektif diperoleh dengan word reordering. Word reordering dapat memberikan peningkatan nilai BLEU sebesar 1.3896% (dari 0.1871 menjadi 0.1897) dan nilai NIST sebesar 0.6218% (dari 5.3876 menjadi 5.4211). Pada korpus bible, rata ? rata nilai peningkatan nilai BLEU yang diperoleh dengan restrukturisasi teks adalah 0.5871% dan untuk nilai NIST terjadi penurunan sebesar 0.0144%. Pada korpus novel, rata ? rata nilai peningkatan nilai BLEU yang diperoleh dengan restrukturisasi teks adalah 0.8751% dan untuk nilai NIST terjadi peningkatan sebesar 0.3170%. Besarnya peningkatan dan penurunan yang terjadi pada penelitian ini cenderung kecil (masih di bawah 1%). Hal ini dikarenakan aturan penerjemahan Bahasa Inggris-Indonesia menggunakan aturan MD-DM yang melibatkan penukaran kata yang jaraknya dekat sudah tercakup dalam distortion model pada mesin penerjemah statistik berdasarkan frase.
Machine translation is an automatic translation tool for a text from one language to another language. The goal of machine translation is to allow people with different cultures and languages to communicate with each other easily. Statistical machine translation is an approach to machine translation in which the results produced on the basis of statistical model that its parameters taken from the bilingual corpus (or parallel) text analysis. The research on statistical machine translation from English to Indonesian has not been received much attention. The English - Indonesian translation quality is still far from perfect and has low accuracy. Based on this issue, come out an idea to make some text restructuring rules on English according to Indonesian languange structure, with the purpose of improvement the quality and accuracy of the statistical machine translation. Text restructuring rules can be word reordering or phrase reordering or both. In this research, the authors design 7 word reordering rules, 7 phrase reordering rules and 2 combined phrase reordering and word reordering rules. This research uses Stanford POS Tagger, Stanford Parser, and MOSES. Stanford POS Tagger is used in word reordering process, Stanford parser used in phrase reordering process, and MOSES in translation process. The results from experiments show that the most effective improvement is word reordering. The improvement with word reordering in BLEU score is 1.3896% (from 0.1871 become 0.1897) and for NIST score is 0.6218% (from 5.3876 become 5.4211). On bible corpus, the average of all text restructuring rules score are increased 0.5871% (BLEU) and decreased 0.0144% (NIST). On novel corpus, the average of all text restructuring rules score are increased 0.8751% (BLEU) and increased 0.3170% (NIST). The amount of increase and decrease that occurred in this study is considered as a small occurence (which is still under 1%). This is caused by the MD-DM rules that involve exchanging words that have small distances between their range which have already been accounted for by the distortion model in phrase based statistical machine translation.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Metti Zakaria Wanagiri
Abstrak :
Mesin Penerjemah (MP) adalah sebuah sub-bagian dari computational linguistics yang menggunakan komputer untuk menerjemahkan teks dari sebuah bahasa ke bahasa yang lain. Sementara Mesin Penerjemah Statistik (MPS) adalah sebuah pendekatan MP dimana hasil terjemahan dihasilkan atas dasar model statistik yang parameter-parameternya diambil dari hasil analisis korpus teks dwibahasa (yang paralel). Pada tugas akhir ini, penerjemahan teks Indonesia-Inggris dilakukan dengan menggunakan MPS berdasarkan frase dimana penerjemahan dilakukan dengan menggunakan prinsip penerjemahan berdasarkan frase. Korpus dwibahasa Indonesia-Inggris yang digunakan terdiri dari kategori berita, kitab suci, novel dan percakapan. Jumlah korpus pelatihan yang digunakan adalah 40779 kalimat, yaitu 704 berita, 4025 percakapan, 16050 novel dan 20000 kitab suci. Sementara korpus pengujian yang digunakan adalah 20300 kalimat, yaitu 300 berita, 2000 percakapan, 8000 novel dan 10000 kitab suci. Percobaan penerjemahan ini dilakukan, dievaluasi dan dianalisis dari dua aspek yaitu penggunaan perangkat bahasa tambahan (yang meliputi Part-of-Speech Tagging dan lema) dan n-gram yang digunakan dalam membentuk model bahasa. Hasil percobaan yang didapat adalah nilai akurasi tertinggi dicapai oleh penerjemahan korpus dwibahasa biasa (tidak menggunakan Part-of-Speech Tagging maupun lema) pada kategori novel dengan menggunakan model bahasa 5-gram, yaitu 0,2696.
Machine Translation (MT) is a sub-field of computational linguistics that uses a computer to translate text or speech from one natural language to another. Meanwhile Statistical Machine Translation (SMT) is a paradigm of MT where translations are generated on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora (parallel). The Indonesian-English text translation is done using a phrase-based SMT in which the translation is carried out using phrase-based Translation. We use Indonesian and English bilingual corpora which consists of news, holy writings, fiction and daily conversation categories. We use training corpus of 40779 sentences which are 704 for news, 4025 for conversation, 16050 for fiction and 20000 for holy writings. Meanwhile the testing corpus consists of 20300 sentences which are 300 for news, 2000 for conversation, 8000 for fiction and 10000 for holy writings. Experiments have been done, evaluated and analyzed regarding two aspects, namely the use of factored-models (Part-of-Speech Tagging and lemma) and number of n-gram for generating the language model. In this thesis, we found that the translations of default bilingual corpora (without Part-of-Speech Tagging and lemma) for fiction category using 5-gram language model yield the highest accuracy of 0.2696.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library