Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Naradhipa Mahardhika Setiawan Bhary
"Sebagai negara hukum, Indonesia memiliki sistem peradilan yang aktif. Setiap bulannya, terdapat sekitar 100.000 dokumen putusan yang dihasilkan oleh lembaga kehakiman di Indonesia. Volume dokumen yang banyak tersebut menimbulkan suatu tantangan bagi insan hukum di Indonesia. Guna mendukung dan mengakomodasi institusi publik dari aspek teknologi dan informasi, serta mendorong pelaksanaan keterbukaan informasi bagi masyarakat umum, maka dibutuhkan suatu metode yang dapat membantu untuk mencari dan mengumpulkan informasi penting dari suatu dokumen putusan pengadilan. Secara khusus, metode ini juga ditujukan untuk membantu para praktisi hukum untuk kepentingan penegakan hukum dan para akademisi hukum untuk kepentingan pendidikan dan pengembangan di bidang hukum. Salah satu teknik untuk mengumpulkan informasi penting dari suatu dokumen adalah Named Entity Recognition (NER). Teknik NER bekerja dengan cara menandai kata-kata yang merupakan informasi penting seperti orang, tempat, lokasi, waktu, kejadian, dan lainnya. NER dapat diterapkan untuk berbagai bidang permasalahan, seperti medis, hukum, dan pertanian. NER yang secara spesifik bekerja untuk menandai entitas hukum disebut dengan Legal Entity Recognition (LER). Penelitian sebelumnya telah menerapkan LER untuk dokumen legal berbahasa Indonesia dengan pendekatan BiLSTM dan CRF sehingga diperlukan penelitian lebih lanjut untuk mengetahui bagaimana performa model-model lain terhadap kasus tersebut. Penelitian ini menguji performa language model, yaitu model berbasis RoBERTa dan model berbasis BERT serta membandingkannya dengan deep learning model, yaitu BiLSTM dan BiLSTM-CRF sebagai model baseline penelitian sebelumnya untuk task LER bahasa indonesia. Hasil penelitian menunjukkan model berbasis RoBERTa memliki performa terbaik untuk task LER pada dataset penulis, XLM-R large dengan skor F1 sebesar 0,9295, XLM-R base dengan skor F1 sebesar 0,9281 dan Indonesian RoBERTa dengan skor F1 sebesar 0,9246.

As a rule of law country, Indonesia has an active justice system. Every month, there are around 100,000 decision documents produced by the judiciary in Indonesia. The large volume of documents poses a challenge for legal people in Indonesia. In order to support and accommodate public institutions from the aspects of technology and information, as well as encourage the implementation of information disclosure for the general public, a method is needed that can help find and collect important information from a court decision document. In particular, this method is also intended to assist legal practitioners for the benefit of law enforcement and legal academics for the benefit of education and development in the field of law. One technique for collecting important information from a document is Named Entity Recognition (NER). The NER technique works by marking words that are important information such as people, places, locations, times, events, and so on. NER can be applied to various problem areas, such as medical, legal, and agriculture. NER which specifically works to mark legal entities is called Legal Entity Recognition (LER). Previous studies have applied LER to legal documents in Indonesian using the BiLSTM and CRF approaches, so further research is needed to find out how other models perform in this case. This study examines the performance of language models, namely the RoBERTa-based model and the BERT-based model and compares them with deep learning models, namely BiLSTM and BiLSTM-CRF as the baseline models for previous studies for the Indonesian language LER task. The results showed that the RoBERTa-based model had the best performance for the LER task in the author’s dataset, XLM-R large with an F1 score of 0.9295, XLM-R base with an F1 score of 0.9281 and Indonesian RoBERTa with an F1 score of 0.9246."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jafar Abdurrohman
"

Sebagai negara hukum, Indonesia memiliki sistem peradilan yang aktif. Setiap bulannya, terdapat sekitar 100.000 dokumen putusan yang dihasilkan oleh lembaga kehakiman di Indonesia. Volume dokumen yang banyak tersebut menimbulkan suatu tantangan bagi insan hukum di Indonesia. Guna mendukung dan mengakomodasi institusi publik dari aspek teknologi dan informasi, serta mendorong pelaksanaan keterbukaan informasi bagi masyarakat umum, maka dibutuhkan suatu metode yang dapat membantu untuk mencari dan mengumpulkan informasi penting dari suatu dokumen putusan pengadilan. Secara khusus, metode ini juga ditujukan untuk membantu para praktisi hukum untuk kepentingan penegakan hukum dan para akademisi hukum untuk kepentingan pendidikan dan pengembangan di bidang hukum. Salah satu teknik untuk mengumpulkan informasi penting dari suatu dokumen adalah Named Entity Recognition (NER). Teknik NER bekerja dengan cara menandai kata-kata yang merupakan informasi penting seperti orang, tempat, lokasi, waktu, kejadian, dan lainnya. NER dapat diterapkan untuk berbagai bidang permasalahan, seperti medis, hukum, dan pertanian. NER yang secara spesifik bekerja untuk menandai entitas hukum disebut dengan Legal Entity Recognition (LER). Penelitian sebelumnya telah menerapkan LER untuk dokumen legal berbahasa Indonesia dengan pendekatan BiLSTM dan CRF sehingga diperlukan penelitian lebih lanjut untuk mengetahui bagaimana performa model-model lain terhadap kasus tersebut. Penelitian ini menguji performa language model, yaitu model berbasis RoBERTa dan model berbasis BERT serta membandingkannya dengan deep learning model, yaitu BiLSTM dan BiLSTM-CRF sebagai model baseline penelitian sebelumnya untuk task LER bahasa indonesia. Hasil penelitian menunjukkan model berbasis RoBERTa memliki performa terbaik untuk task LER pada dataset penulis, XLM-R large dengan skor F1 sebesar 0,9295, XLM-R base dengan skor F1 sebesar 0,9281 dan Indonesian RoBERTa dengan skor F1 sebesar 0,9246.


As a rule of law country, Indonesia has an active justice system. Every month, there are around 100,000 decision documents produced by the judiciary in Indonesia. The large volume of documents poses a challenge for legal people in Indonesia. In order to support and accommodate public institutions from the aspects of technology and information, as well as encourage the implementation of information disclosure for the general public, a method is needed that can help find and collect important information from a court decision document. In particular, this method is also intended to assist legal practitioners for the benefit of law enforcement and legal academics for the benefit of education and development in the field of law. One technique for collecting important information from a document is Named Entity Recognition (NER). The NER technique works by marking words that are important information such as people, places, locations, times, events, and so on. NER can be applied to various problem areas, such as medical, legal, and agriculture. NER which specifically works to mark legal entities is called Legal Entity Recognition (LER). Previous studies have applied LER to legal documents in Indonesian using the BiLSTM and CRF approaches, so further research is needed to find out how other models perform in this case. This study examines the performance of language models, namely the RoBERTa-based model and the BERT-based model and compares them with deep learning models, namely BiLSTM and BiLSTM-CRF as the baseline models for previous studies for the Indonesian language LER task. The results showed that the RoBERTa-based model had the best performance for the LER task in the author’s dataset, XLM-R large with an F1 score of 0.9295, XLM-R base with an F1 score of 0.9281 and Indonesian RoBERTa with an F1 score of 0.9246.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fariz Wahyuzan Dwitilas
"

Sebagai negara hukum, Indonesia memiliki sistem peradilan yang aktif. Setiap bulannya, terdapat sekitar 100.000 dokumen putusan yang dihasilkan oleh lembaga kehakiman di Indonesia. Volume dokumen yang banyak tersebut menimbulkan suatu tantangan bagi insan hukum di Indonesia. Guna mendukung dan mengakomodasi institusi publik dari aspek teknologi dan informasi, serta mendorong pelaksanaan keterbukaan informasi bagi masyarakat umum, maka dibutuhkan suatu metode yang dapat membantu untuk mencari dan mengumpulkan informasi penting dari suatu dokumen putusan pengadilan. Secara khusus, metode ini juga ditujukan untuk membantu para praktisi hukum untuk kepentingan penegakan hukum dan para akademisi hukum untuk kepentingan pendidikan dan pengembangan di bidang hukum. Salah satu teknik untuk mengumpulkan informasi penting dari suatu dokumen adalah Named Entity Recognition (NER). Teknik NER bekerja dengan cara menandai kata-kata yang merupakan informasi penting seperti orang, tempat, lokasi, waktu, kejadian, dan lainnya. NER dapat diterapkan untuk berbagai bidang permasalahan, seperti medis, hukum, dan pertanian. NER yang secara spesifik bekerja untuk menandai entitas hukum disebut dengan Legal Entity Recognition (LER). Penelitian sebelumnya telah menerapkan LER untuk dokumen legal berbahasa Indonesia dengan pendekatan BiLSTM dan CRF sehingga diperlukan penelitian lebih lanjut untuk mengetahui bagaimana performa model-model lain terhadap kasus tersebut. Penelitian ini menguji performa language model, yaitu model berbasis RoBERTa dan model berbasis BERT serta membandingkannya dengan deep learning model, yaitu BiLSTM dan BiLSTM-CRF sebagai model baseline penelitian sebelumnya untuk task LER bahasa indonesia. Hasil penelitian menunjukkan model berbasis RoBERTa memliki performa terbaik untuk task LER pada dataset penulis, XLM-R large dengan skor F1 sebesar 0,9295, XLM-R base dengan skor F1 sebesar 0,9281 dan Indonesian RoBERTa dengan skor F1 sebesar 0,9246.


As a rule of law country, Indonesia has an active justice system. Every month, there are around 100,000 decision documents produced by the judiciary in Indonesia. The large volume of documents poses a challenge for legal people in Indonesia. In order to support and accommodate public institutions from the aspects of technology and information, as well as encourage the implementation of information disclosure for the general public, a method is needed that can help find and collect important information from a court decision document. In particular, this method is also intended to assist legal practitioners for the benefit of law enforcement and legal academics for the benefit of education and development in the field of law. One technique for collecting important information from a document is Named Entity Recognition (NER). The NER technique works by marking words that are important information such as people, places, locations, times, events, and so on. NER can be applied to various problem areas, such as medical, legal, and agriculture. NER which specifically works to mark legal entities is called Legal Entity Recognition (LER). Previous studies have applied LER to legal documents in Indonesian using the BiLSTM and CRF approaches, so further research is needed to find out how other models perform in this case. This study examines the performance of language models, namely the RoBERTa-based model and the BERT-based model and compares them with deep learning models, namely BiLSTM and BiLSTM-CRF as the baseline models for previous studies for the Indonesian language LER task. The results showed that the RoBERTa-based model had the best performance for the LER task in the author’s dataset, XLM-R large with an F1 score of 0.9295, XLM-R base with an F1 score of 0.9281 and Indonesian RoBERTa with an F1 score of 0.9246.

 

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochammad Shaffa Prawiranegara
"Skripsi ini bertujuan untuk mengembangkan model klasifikasi teks berbasis Convolutional Neural Network (CNN) dan BERT Language Model untuk mendeteksi SQL Injection pada Apache Web Server. Skripsi ini melibatkan pengumpulan dan pemrosesan dataset, literasi teori dasar, perancangan sistem, implementasi sistem, dan evaluasi kinerja model deep learning. Dengan menggunakan dataset publik dari Kaggle, model yang dikembangkan berhasil mendeteksi SQL Injection dengan akurasi yang tinggi. Hasil eksperimen menunjukkan bahwa model BERT memberikan performa yang lebih baik dibandingkan dengan CNN dalam hal accuracy, precision, recall, dan F1-score. Implementasi teknik deep learning pada sistem SQL Injection Detection juga mempermudah log file analysis pada Apache Web Server. Kesimpulan dari skripsi ini adalah berhasilnya pengembangan sistem SQL Injection Detection berbasis Convolutional Neural Network (CNN) dan BERT Language Model dengan akurasi masing-masing sebesar 95.99% dan 99.84%.

This undergraduate thesis aims to develop a text classification model based on Convolutional Neural Network (CNN) and BERT Language Model to detect SQL Injection on the Apache Web Server. The research involves data collection and preprocessing, basic theory literature review, system design, system implementation, and evaluation of deep learning model performance. By using a public dataset from Kaggle, the developed model successfully detects SQL Injection with high accuracy. The experimental results show that the BERT model outperforms CNN in terms of accuracy, precision, recall, and F1-score. The implementation of deep learning techniques in the SQL Injection Detection system also simplifies log file analysis on the Apache Web Server. The conclusion of this undergraduate thesis is the successful development of an SQL Injection detection system based on Convolutional Neural Network (CNN) and BERT Language Model with accuracies of 95.99% and 99.84% respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library