Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
IGM Surya A. Darmana
"

Sistem Isyarat Bahasa Indonesia (SIBI) adalah sistem bahasa isyarat yang diakui secara resmi oleh Departemen Pendidikan dan Kebudayaan Indonesia dan digunakan sebagai salah satu media komunikasi dalam proses pembelajaran di SLB (Sekolah Luar Biasa) bagi kaum tunarungu. Bagi kaum awam yang sama sekali tidak mengetahui gerakan isyarat SIBI tentunya akan mengalami kesulitan ketika harus berkomunikasi dengan kaum tunarungu. Berangkat dari hal tersebut, diperlukan suatu sistem penerjemah dari gerakan SIBI ke teks Bahasa Indonesia, ataupun sebaliknya dari teks Bahasa Indonesia ke gerakan SIBI. Penelitian ini merupakan tahapan awal dari sistem penerjemah dari teks Bahasa Indonesia ke bahasa isyarat yang memiliki fokus untuk melakukan proses pembangkitan gerakan isyarat dari suatu kalimat menjadi isyarat SIBI dalam bentuk animasi tiga dimensi gerakan tangan dan jari pada platform telepon pintar. Proses pembangkitan gerakan dimulai dari proses dekonstruksi kalimat menjadi komponen-komponen kata penyusunnya menggunakan look-up table kata berimbuhan, kata dasar, dan kamus slang. Komponen-komponen kata lalu direferensikan dengan animasi gerakannya. Data gerakan didapat melalui proses perekaman menggunakan sensor motion-capture perception neuron v2 yang mengacu pada kamus SIBI. Dalam proses penyusunan gerakan-gerakan SIBI, akan terdapat jeda antara gerakan awal menuju gerakan selanjutnya. Sehingga diperlukan beberapa gerakan transisi yang dibangkitkan menggunakan interpolasi cross-fading. Berdasarkan hasil evaluasi yang telah dilakukan, gerakan yang dibangkitkan dapat merepresentasikan gerakan SIBI yang benar dengan nilai akurasi terbesar 97.56%, dan 84% hasil pembangkitan dinyatakan Sangat Puas, 14% Puas, serta 2% Cukup.


Sign System for Bahasa Indonesia (SIBI) is the official sign language authorized by The Ministry of Education and Culture of Indonesia and being used as one of the communication media by School for Children with Special Needs (SLB) for people with hearing impairments in the process of learning. For people who have a lack of knowledge about SIBI gestures certainly will have difficulty to communicate with people with hearing impairments. Thus, a translation system from SIBI gestures to sentences in Bahasa Indonesia or vice versa is needed. This research is the initial stage of a translation system from sentences in Bahasa Indonesia to SIBI Gestures. The focus of this research is to generate sign gestures in the form of 3D Animation from a sentence input in text format and deployed on the smartphone device. The generation process started from deconstructing the input sentence into its word components using a look-up table that consists of affixes, root words, and a slang dictionary. Then, this word components referred to their gesture animations. The gesture data were recorded with motion-capture sensor Perception Neuron v2 and using the official SIBI Dictionary as reference. In the process of combining the SIBI gestures, a pause between the initial gesture and the next gesture has occurred. Thus, transition gestures also needed to be generated using the cross-fading interpolation. Based on evaluation results, generated gestures correctly represent smooth SIBI gestures with the largest accuracy score of 97.56% with a level of Very Satisfied 84%, Satisfied 14%, Fair 2%.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Achmad Faiz Siraj
"PM2.5 merupakan salah satu penyebab tingginya angka polusi di Jakarta. Skripsi ini akan membahas penerapan Recurrent Neural Network jenis Long Short-Term Memory (RNN-LSTM) dan Autoregressive Integrated Moving Average (ARIMA), dua metode yang dapat digunakan untuk melakukan prediksi pada dataset jenis time series, sebagai algoritma untuk melakukan prediksi pada kandungan polutan PM2.5 di Jakarta. Terdapat dua jenis preprocessing yang diujicoba pada pengujian ini, yaitu dengan imputation menggunakan mean dan linear interpolation. Saat pembuatan model pada ARIMA, dilakukan pengaturan order untuk mencari model terbaik yang dapat melakukan prediksi dengan akurasi tertinggi. Sementara untuk RNN-LSTM, pencarian model terbaik dilakukan dengan melakukan serangkaian ujicoba dengan perubahan pada beberapa parameter seperti ukuran dari rolling window, batch size, dan optimizer. Berdasarkan hasil akurasi, didapatkan model dengan ARIMA order (2,0,1) sebagai model paling baik ketika dilakukan ujicoba dengan imputation jenis mean dengan RMSE sebesar 17,84. Lebih baik dari hasil yang didapatkan RNN-LSTM pada metode imputation tersebut yang hanya mendapat RMSE 18,00. Namun RNN-LSTM memiliki hasil akurasi yang lebih baik ketika dilakukan ujicoba dengan metode imputation dengan linear interpolation dimana RMSE yang didapatkan sebesar 17,47. Lebih baik dari ARIMA yang hanya mendapat RMSE sebesar 17,66.

PM2.5 is one of the causes of Jakarta’s high pollution level. This thesis will discuss the implementation of Recurrent Neural Network type Long Short-Term Memory (RNN-LSTM) and Autoregressive Integrated Moving Average (ARIMA), two algorithm that are able to predict a time series dataset, as two algorithms used to do a forecasting in PM2.5 pollutant level in Jakarta. There are two preprocessing used in this test, mean imputation and linear interpolation. In ARIMA, tweaking to find
model with best accuracy was done by altering its order. While in RNN-LSTM, the search for the best model was done by tweaking several parameters such as the size of its rolling window, batch size, and optimizer. Based on its accuracy, an ARIMA model with order of (2,0,1) was found as the best model during the test with mean imputation with RMSE of 17,84 compared to RNN-LSTM’s 18,00. But RNNLSTM has better accuracy when tested with linear interpolation, where it got RMSE of 17,47. Where ARIMA only has RMSE of 17,66.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"The aim of the present study is to estimate some mortality
measures such as the age specific death rates (ASDRA), infant
mortality rate (IME) and me table crude death rate (CDR) for male,
female and both sexes of Bangladesh in 2005. For this purpose, two
abridged life tables, one for male and other for female were
constructed using the corresponding secondary data on life
expectancy at birth of Bangladesh in 2005 taken from Islam (2003).
These were compared to the values in 199] and it was observed that
these rates were showing decreasing trend during 1991-2005.
Moreover, a mathematical model was fitted to the number of
persons surviving at an exact age x (lx) only for male of Bangladesh
in 2005. Model validation technique, cross validity prediction
power (C VFP) and F-test, showed that the mathematical model was
valid and hence, fit is well. Instantaneous force of mortality ( |J. X )
only for male of Bangladesh in 2005 was estimated And it was
found that |.L X exhibited decreasing trend up to age 20-24 and
increasing in the remaining age group but rapidly increasing after
age 50 years to infinity.
"
Journal of Population, 11 (2) 2005 : 117-130, 2005
JOPO-11-2-2005-117
Artikel Jurnal  Universitas Indonesia Library