Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
New York: Academic Press, 1982
548.7 POT
Buku Teks  Universitas Indonesia Library
cover
Nur Hasanah
"Speckle Interferometry method capable for determining both the vibration amplitude and phase shifting So that double exposure for the vibration analysis applying speckle pattern interferometry is reported. Its method is recorded on a negative film using double-exposure; two object states which are peak and valley of the object vibration are recorded. The film with double exposure is then illuminated with coherent light, and each pair produces of speckle becomes the slits of Young's experiment With using Liquid Crystal as phase modulator (switching pulse), so that switching pulse should be synchronized to the peak or valley of the object vibration. The vibration object using Ceramic Vibrator (PZT) were put on the tuning fork surface."
Depok: Fakultas Teknik Universitas Indonesia, 1994
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurul Jamilah
"Logam tanah jarang (LTJ) memiliki peran strategis dalam berbagai industri canggih seperti baterai listrik, pertahanan, kendaraan listrik, serta perangkat elektronik. Untuk pemisahan dan pemulihan LTJ yang efisien dan ramah lingkungan, penelitian ini mengembangkan dua jenis adsorben berbasis nanotabung karbon (CNT) dalam struktur kristal cair: liotropik (p(HEMA–CNT/CNC)) dan termotropik (p(MMA–CNT/RM 257)). Adsorben liotropik disusun dari cellulose nanocrystal (CNC) dan SWCNT, sedangkan adsorben termotropik dari MMA, RM-257, dan ODA–SWCNT. Karakterisasi dilakukan menggunakan TGA, FTIR, Raman, BET, SEM–EDS, serta uji efisiensi adsorpsi dengan UV–VIS dan ICP–OES. Hasilnya menunjukkan adsorben liotropik memiliki kandungan CNT lebih tinggi (0,50 wt%) dan luas permukaan lebih besar (19,09 m²/g) dibandingkan termotropik (0,05 wt%; 4,784 m²/g). Meskipun struktur termotropik lebih homogen dan stabil, adsorben liotropik menunjukkan efisiensi adsorpsi lebih tinggi hingga 99%, dibandingkan 74% pada termotropik. Model kinetika dan isoterm menunjukkan adsorpsi pada liotropik mengikuti model Langmuir dan kinetika pseudo-orde pertama dan kedua, sedangkan termotropik mengikuti model Freundlich dan pseudo-orde kedua. Artinya proses adsorpsi pada adsorben liotropik, yaitu adsorpsi fisik di permukaan dan penetrasi ke dalam pori adsorben (adsorpsi kimia) hingga terbentuk monolayer sedangkan adsorben kristal cair termotropik adalah adsorpsi fisik hingga terbentuk multilayer pada permukaan adsorben

Rare earth elements (REEs) are strategically important for advanced industries such as energy storage in electric batteries, energy conversion, defense, electric vehicles, and components in smartphones, laptops, and LCDs. Environmentally friendly and efficient separation and recovery techniques are continuously being developed, including selective adsorption using carbon nanotube (CNT)-based adsorbents in solid-phase extraction. This study developed two CNT-based liquid crystal adsorbents: lyotropic (p(HEMA–CNT/CNC)) and thermotropic (p(MMA–CNT/RM 257)), to adsorb REE ions (La³âº, Ce³âº, Nd³âº) at low concentrations. The lyotropic adsorbent was synthesized from cellulose nanocrystals (CNC) and SWCNTs, while the thermotropic variant used MMA, RM-257, and ODA–SWCNT. Characterizations were performed using TGA, FTIR, Raman, BET, SEM–EDS, and adsorption efficiency tests via UV–VIS and ICP–OES. Results showed the lyotropic adsorbent had a higher CNT content (0.50 wt%) and surface area (19.09 m²/g) than the thermotropic one (0.05 wt%, 4.784 m²/g). Although the thermotropic adsorbent exhibited better homogeneity and mechanical stability, the lyotropic adsorbent achieved higher adsorption efficiency (up to 99%) compared to 74% for the thermotropic type. Kinetic and isotherm analyses revealed the lyotropic system followed the Langmuir model and pseudo-first- and second-order kinetics, while the thermotropic system followed the Freundlich model and pseudo-second-order kinetics, indicating monolayer versus multilayer adsorption behavior. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2025
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wanto
"Dalam tugas akhir ini telah dirancang dan dibuat suatu sistem untuk mengukur besarnya intensitas cahaya tampak (visible light). Sistem tersebut berbasis pada mikrokontroler sebagai pengolah data. Selanjutnya hasil pengukuran ditampilkan pada sebuah layar LCD.
Untuk dapat mengetahui informasi mengenai intensitas cahaya, maka dibutuhkan suatu sistem perangkat keras pengukuran yang dilengkapi dengan perangkat lunak. Perangkat keras yang digunakan yaitu rangkaian sensor cahaya LDR (Light Dependent Resistor) untuk mendeteksi intensitas cahaya, kemudian mengkonversikannya menjadi tegangan. Rangkaian ADC (Analog to Digital Converter) untuk mengubah tegangan analog yang berasal dari rangkaian sensor cahaya, untuk menjadi data pengukuran digital. Sistem mikrokontroler untuk mengolah dan mengkalibrasi data hasil pengukuran tersebut untuk ditampilkan di layar LCD (Liquid Crystal Display).
Karena keterbatasan tidak tersedianya monokromator, maka tidak dapat dilaksanakan pengukuran panjang gelombang sinar yang diamati. Selanjutnya, untuk mempermudah pengukuran intensitas cahaya, dikelompokan dalam beberapa warna yaitu cahaya putih, merah, kuning, hijau, dan biru. Untuk mendekati nilai yang sebenarnya telah dilakukan kalibrasi untuk masing-masing warna sesuai dengan spektrum sensitivitas LDR.

An instrument prototype for visible light intensity measurement has been designed and fabricated for the purpose of final project to obtain Sarjana Teknik degree of Electrical Engineering, Universitas Indonesia. The instrument is mainly supported by microcontroller AT89S52 system as the measurement data processing center. Further more, the result of the measurement processing is displayed on LCD screen.
To obtain the light intensity measurement data, it is required an instrument system which consists of microcontroller system, light dependent resistor (LDR) circuit to detect light intensity and convert it to analog voltage, and analog to digital converter (ADC) to convert the analog voltage from LDR circuit to be digital measured data for microcontroller. Furthermore, the microcontroller will process and calibrate the measurement data and diplays the data to the ouput screen.
Due to limited facilities, for example unavailability of monochromator, the wavelength measurement cannot be conducted. Moreover, to simplify the light intensity measurement for specific color light, the light is grouped into several groups of color such as white, red, yellow, green and blue. To obtain a better accuracy, it has been done intensity callibatrion for every group of color according to LDR sensitivity spectrum and the callibration data is used in microcontroller system to determine accurate measurement data.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40437
UI - Skripsi Open  Universitas Indonesia Library
cover
Miller, Michael E.
"This book explores the principles, design, and image processing of multi-primary displays, and introduces the reader to the intricacies of the typical imaging pathways which influence display design and the perception of color within a display system.
Early chapters introduce the concepts behind human perception, color science, and lighting, which are necessary to fully understand multi-primary displays. The reader is also introduced to digital capture and transmission systems to better understand the ecosystem in which multi-primary displays exist. Subsequent chapters introduce the reader to current display technologies, including LCD, OLED, and inorganic LED displays. The working principles, performance, and upcoming advances are discussed for each of these technologies to provide the reader with a clear understanding of the tradeoffs which are necessary when considering multi-primary displays. This discussion is followed by an in-depth discussion of the image processing technology necessary to implement multi-primary displays. The book concludes with chapters that clearly discuss the advantages and limitations of multi-primary displays for direct view, virtual reality, and augmented reality displays.
The book provides a broad viewpoint across the entire display ecosystem, explaining the interactions among system components to provide a rationale for the further development of multi-primary displays.
Whether the reader is interested in broadening their understanding of display systems or the development of multi-primary displays, the text provides and understandable and practical summary of important display system concepts."
Switzerland: Springer Nature, 2019
e20509674
eBooks  Universitas Indonesia Library