Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Pudy Prima
"Permasalahan lokasi alokasi sekolah bertujuan untuk menghasilkan distribusi peserta didik ke sekolah sedemikian sehingga total jarak perjalanan siswa minimum. Permasalahan ini termasuk jenis masalah kombinatorial dan dapat dimodelkan sebagai permasalahan p-median. Pada penelitian ini, pendekatan algoritma hibrida firefly-genetika digunakan untuk menyelesaikan masalah lokasi alokasi sekolah dengan studi kasus SMP Negeri di Jakarta Selatan. Algoritma firefly diusulkan karena kemampuannya yang baik dalam mengarahkan konvergensi solusi ke nilai fungsi objektif yang lebih baik dalam permasalahan dengan fungsi kontinu. Algoritma genetika diusulkan karena kemampuan operasi genetikanya yang dapat menjaga variasi individu dalam populasi sehingga dapat menghindarkan solusi terjebak di nilai optimum lokal. Hasil pengujian menunjukkan nilai jarak perjalanan yang didapatkan oleh algoritma hibrida firefly-genetika lebih baik daripada algoritma firefly dan algoritma genetika. Untuk nilai parameter yang sama, waktu komputasi algoritma hibrida firefly-genetika relatif sama dengan algoritma firefly, namun jauh lebih tinggi dari algoritma genetika.
......School location allocation problem aims to distribute students to schools such that the total of students travel distance is minimum. This problem is a type of combinatorial problem and can be modeled as a p-median problem. In this study, hybrid firefly-genetic algorithm is used to solve school location allocation problem with case study of South Jakarta junior public schools. Firefly algorithm is proposed because of its ability in directing the convergence to better solutions in continuous problems. Genetic algorithm is proposed because its genetic operators can maintain individual variation in the population to avoid a solution getting stuck at local optimum. The experiment results show that the total travel distance obtained by hybrid firefly-genetic algorithm is better than firefly algorithm and genetic algorithm. For the similar parameter values, the computational time of hybrid firefly-genetic algorithm is quite same as firefly algorithm, but much higher than genetic algorithm."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widya Nurcahayanty
"Ketika kompetitor tumbuh dengan cepat dan pasar menjadi lebih kompetitif, diperlukan fokus yang kuat untuk menambah dan memperbaiki servis yang diberikan kepada pelanggan. Pelayanan terbaik perlu diberikan kepada pelanggan untuk menjaga loyalitas para pelanggan tersebut. Berdasarkan nilai bisnis perusahaan logistik, pelayanan terbaik dapat diukur dari tidak adanya keterlambatan, harga yang kompetitif, dan lokasi depot yang mudah untuk ditemukan. Penelitian ini membahas mengenai masalah untuk penempatan lokasi depot baru untuk perusahaan X-Logistik pada daerah urban, Jakarta, Indonesia. Tujuan dari penelitian ini adalah meningkatkan efisiensi daerah jangkauan depot sebagai upaya untuk menurunkan total konsumsi waktu perjalanan, minimalisasi biaya transportasi, dan meminimalkan total jarak centroid untuk masing-masing kelompok wilayah. Dengan menggunakan algoritma hibrida K- means Ant Colony Optimization (K-ACO) dapat dihitung jumlah depot yang memberikan total biaya paling kecil. Setelah jumlah depot yang akan dibuka ditentukan, dengan menggunakan metode trial dan error, koordinat dari setiap depot yang akan dibuka dapat ditentukan. Kelompok konsumen yang akan dilayani dari setiap depot yang akan dibuka juga dapat ditentukan bersamaan dengan jumlah depot yang terbentuk. Hasil akhir dari penelitian ini adalah rekomendasi keputusan untuk perusahaan X-Logistik mengenai jumlah depot baru yang akan dibuka, koordinat lokasi depot baru akan dibuka, serta kelompok konsumen yang akan dilayani dari setiap depot yang dibuka. Dari seluruh usulan, keputusan yang diambil mengacu kepada jumlah depot yang dapat memberikan total biaya terendah.

When the competitor growth rapidly and the market become more competitive, there needs to be a strong focus to enhance and upgrade their service to customer. Best service offers to customer is the only way to keep their customer loyalty. Following the business core value of logistic company, the best service offer can be measured by zero delay, competitive price, and the depot location can be found easily. This study examines the current location set of all depot location X logistic that deploy logistic service in urban area, Jakarta, Indonesia. The goals of this study are to improve the efficiency of coverage in terms of decreasing total travel times, minimize total transportation cost and minimize total cost for a whole. This study employs the proposed methodology of hybrid K-ACO metaheuristic algorithm to solve location allocation problem and will utilize a minimum distance to reach the goals. By using hybrid K-ACO algorithm the number of depot will be open that which gives minimum total cost can be determined. After determining number of depot will be opened, by using trialerror in hybrid K-ACO algorithm the coordinate location to construct new depot and which customers will be served at new depot opened can be known simultaneously. The rest of this study will recommend where the X logistic company should be built the depot and a comparison will be conducted of analyzing the total costs associated with number of depot opened."
Depok: Universitas Indonesia, 2012
T30900
UI - Tesis Open  Universitas Indonesia Library