Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Belloli, Robert C.
New York: McGraw-Hill, 1974
547 BEL o
Buku Teks  Universitas Indonesia Library
cover
Rita Arbianti
"Surfaktan berbahan baku oleokimia memiliki beberapa keunggulan, diantaranya bersifat terbarukan (renewable resources) dan secara alami mudah terdegradasi. Surfaktan ini dapat dibuat dengan mengunakan bahan baku minyak kelapa murni dan melalui proses sebagai berikut: reaksi transesterifikasi untuk mengkonversi minyak menjadi metil ester; pemisahan metil laurat dari metil ester; reaksi hidrogenasi metil laurat menggunakan katalis Ni; reaksi sulfatasi dengan menambahkan H2SO4 ; serta netralisasi dengan NaOH. Tujuan dari penelitian ini adalah mendapatkan kondisi optimum yang meliputi suhu reaksi, laju alir gas hidrogen, dan persen berat katalis pada reaksi hidrogenasi metil laurat menggunakan katalis Ni untuk menghasilkan senyawa yang akan diproses lebih lanjut menjadi urfaktan yang selanjutnya disebut sebagai SLS (Sodium Lauril Sulfat) analog (SLS a). Pengujian terhadap produk hasil hidrogenasi dilakukan dengan mengukur kemampuan dalam menurunkan tegangan permukaan air serta menstabilkan emulsi minyak dalam air. Hasil penelitian menunjukkan kondisi operasi optimum reaksi hidrogenasi metil laurat terjadi pada suhu 270oC, lajualir gas H21 ml/s, dan 30% berat katalis. Kemampuan SLS analog yang dihasilkan mampu menurunkan tegangan permukaan air hingga mencapai 44.5 mN/m dengan penambahan 25% berat surfaktan. Berdasarkan hasil uji stabilitas emulsi minyak dalam air, surfaktan yang dihasilkan mampu menstabilkan emulsi selama 1.235 detik.

One major advantage of oleochemical surfactant is its renewable and degradable properties regarding environmental issue. This surfactant is made using coconut oil as raw material, the process are as follows: trans-esterification reaction to converse virgin coconut oil to methyl ester, followed by methyl laurate separation from methyl ester based on melting point difference, methyl laurate hydrogenation by using nickel catalyst, sulfatation reaction, adding H2SO4, and neutralization by using NaOH. The goals of this research are to obtain the optimum reaction condition in aspects of several variables, such as temperature, hydrogen gas flow rate, and percent weig ht of catalyst in the hydrogenation reaction to produce substance as based material for an analogue SLS surfactant. This research shows that the optimum operating conditions are 270oC of temperature, 1mL/s of H2gas flow rate, and 30% wt of catalyst. Testing of these surfactants are done by measuring their ability to reduce the surface tension of water and stabilize the oil in water emulsion. Its results show that adding 25 wt% of surfactants has surface tension of 44.5 mN/m. Based on the stabilizing emulsion test, surfactants can stabilize emulsion for 1.235 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2008
JUTE-22-3-Sep2008-229
Artikel Jurnal  Universitas Indonesia Library
cover
Desti Andani
"Surfaktan merupakan bahan utama dalam pembuatan bahan pembersih dan kosmetik, seperti sabun, sampo, pasta gigi, pelembab kulit, dan pembersih muka. Berdasarkan bahan baku pembuatannya, surfaktan dapat dibedakan menjadi surfaktan petrokimia yang berasal dari gas dan minyak bumi, dan surfaktan oleokimia yang berasal dari minyak nabati. Surfaktan SLS merupakan salah satu jenis surfaktan oleokimia yang memiliki muatan negatif pada gugus antarmuka hidrofobiknya. Keunggulan Surfaktan SLS ini antara lain bersifat terbarukan (renewable resources) dan secara alami mudah terdegradasi.
Surfaktan ini dibuat dengan mengunakan bahan baku minyak kelapa murni dan melalui proses sebagai berikut: reaksi transesterifikasi untuk mengkonversi minyak menjadi metil ester; pemisahan metil laurat dari metil ester; reaksi hidrogenasi metil laurat menggunakan katalis Ni; reaksi sulfatasi dengan menambahkan H2SO4; serta netralisasi dengan NaOH.
Tujuan dari penelitian ini adalah untuk mengetahui keefektifan pemisahan metil laurat dari metil ester berdasarkan perbedaan titik leleh menggantikan pemisahan menggunakan kolom distilasi yang membutuhkan biaya besar; serta mendapatkan kondisi optimum yang meliputi suhu, laju alir gas hidrogen, dan persen berat katalis pada reaksi hidrogenasi metil laurat menggunakan katalis Ni untuk menghasilkan senyawa yang akan diproses lebih lanjut menjadi Surfaktan SLS analog. Pengujian terhadap produk hidrogenasi tersebut dilakukan dengan mengukur kemampuan menurunkan tegangan permukaan air serta menstabilkan emulsi minyak dalam air.
Hasil penelitian menunjukkan kondisi operasi optimum rekasi hidrogenasi metil laurat terjadi pada suhu 270°C, laju alir gas H2 1 ml/s, dan 30% berat katalis. Kemampuan SLS analog yang dihasilkan mampu menurunkan tegangan permukaan air hingga mencapai 44,5 mN/m penambahan 25% berat sedangkan tegangan permukaan tanpa penambahan surfaktan adalah 74 mN/m. Berdasarkan hasil uji stabilitas emulsi minyak dalam air, surfaktan yang dihasilkan mampu menstabilkan emulsi selama 1.235 detik, atau dengan kata lain dapat menaikkan kestabilan emulsi hampir enam kali lipat lebih lama.

Surfactant is known as a basic material in detergent and cosmetic manufacturing process, for products such as soap, shampoo, toothpaste, and facial foam. Based on its raw material, there are petrochemical surfactant which is produced from petroleum based material and oleochemical surfactant which is produced from natural based material. SLS surfactant is a type of surfactant which has a negative pole charge in its hydrophobic interface (hydrophobic surface-active). One major advantage of this surfactant is its renewable and degradable properties regarding environmental issue.
This surfactant is made using coconut oil as raw material, the process are as follows: trans-esterification reaction to converse virgin coconut oil to methyl ester, followed by methyl laurate separation from methyl ester based on melting point difference (not distillation which has such a high production cost), methyl laurate hydrogenation by using nickel catalyst, sulfatation reaction, adding H2SO4, and neutralization by using NaOH.
The goals of this research are to find out the effectivity of the separation based on different melting point between methyl laurate and methyl ester and to obtain the optimum reaction condition in aspects of several variables, such as temperature, hydrogen gas flow rate, and percent weight of catalyst in the hydrogenation reaction to produce substance as a based material for an analogue SLS surfactant. This research shows that the optimum operating conditions are 270°C of temperature, 1mL/s of H2 gas flow rate, and 30% wt of catalyst. Testing of these surfactants are done by measuring their ability to reduce the surface tension of water and stabilize the oil in water emulsion.
Its results show that adding 25 wt % of surfactants has surface tension of 44.5 mN/m compared to 74 mN/m or pure water. Based on the stabilizing emulsion test, surfactants can stabilize emulsion for 1,235 seconds or six times longer than mixed oil-water without surfactant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S49680
UI - Skripsi Open  Universitas Indonesia Library
cover
Chutima Wiranidchapong; Boonta Chutvirasakul
"Drug-polymer miscibility is a prerequisite for a stable solid dispersion. In this study, the miscibility of ibuprofen and the polymers, i.e., Eudragit® RL (ERL) and ethylcellulose (EC), were investigated by DSC. Ibuprofen in ERL solid dispersion at 0 - 100 %w/w was examined by the heating program: 25 - 140 °C, 10 K/min; 140 - (-60) °C, -10 K/min; and (-60) - 140 °C, 5 K/min. Solid dispersion of ibuprofen in EC at the same concentration range was examined by the heating program: 25 - 180 °C, 10 K/min; 180 - (-60) °C, -10 K/min; and (-60) - 180 °C, 5 K/min. The melting point depression and the variation of a single glass transition temperature (Tg) as a function of composition were presented in solid dispersion of ibuprofen in either ERL or EC, indicating the miscibility between blend components. Fitting the melting point of ibuprofen in either ERL or EC (Tmb) to Nishi-Wang equation by nonlinear regression analysis gave R2 equal to 0.8768 and 0.9667, respectively. Fitting experimental Tg to Gordon-Taylor and Kwei equations gave R2 equal to 0.9796 and 0.9851 for ibuprofen in ERL and 0.9753 and 0.9793 for ibuprofen in EC. The Kwei equation seemed to be better for describing the Tg of the blends, indicating the interaction between ibuprofen and the polymers, i.e., ERL and EC, which was confirmed by FTIR analysis. However, the non-randomness of residuals suggested that Nishi- Wang, Gordon-Taylor, and Kwei could not completely explain the Tmb and Tg of the blends."
Thammasat Printing House, 2017
500 TIJST 22:1 (2017)
Artikel Jurnal  Universitas Indonesia Library