Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pada pabrik biohidrogen, unit kompresor merupakan salah satu unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya. Multivariable model predictive control (MMPC) digunakan untuk mengendalikan proses pada pabrik. Untuk mendapatkan pengendalian yang optimal, perlu dilakukan penyetelan. Penyetelan akan dilakukan pada Matlab-Simulink yang diintegrasikan dengan Aspen Plus Dynamics. Sistem pengendalian akan dibuat pada Simulink dan simulasi proses akan dilakukan pada Aspen Plus Dynamic. Penyetelan ini dilakukan dungeon metode Genetic Algorithm dungeon metode pencarian seleksi turnamen. Setelah itu, hasil penyetelan akan dijalankan juga dengan unisim design agar kinerja pengendalian dapat dibandingkan dengan penelitian sebelumnya. Model first order plus dead time (FOPDT) digunakan sebagai model prediksi MMPC. Pada penelitian ini, model FOPDT yang digunakan di MMPC pada Matlab harus dihasilkan dengan cara satuan tekanan keluaran kompresor terlebih dahulu diubah menjadi satuan persentase karena MMPC pada Matlab akan menginterpretasikan variabel-variabel perhitungan dalam satuan persen. Parameter time sampling (T), prediction horizon (P), dan control horizon (M) terbaik yang diperoleh dari metode penyetelan seleksi turnamen pada simulasi dengan unisim untuk perubahan set-point (SP) yaitu 1 detik, 18, dan 3. Untuk uji gangguan parameter T, P, dan M yang diperoleh dengan penyetelan fine tuning terbaik yaitu 1 detik, 341, dan 121. Pada simulasi Matlab-Simulink-Aspen Plus Dynamics, parameter T, P, dan M yang terbaik yaitu 0,05 detik, 18, dan 2 untuk perubahan SP dan 0,05 detik, 7, dan 1 untuk perubahan gangguan.

Hydrogen is one of the gases that has many uses, including in the chemical industry. In a biohydrogen plant, the compressor unit is one of the important units in the biomass-based biohydrogen plant. The compressor unit works to achieve high pressure for further operational conditions. Multivariable Model Predictive Control (MMPC) is used to control the processes in the plant. To obtain optimal control performance, tuning process is necessary. The tuning process will be conducted in Matlab-Simulink integrated with Aspen Plus Dynamics. The control system will be designed in Simulink, and the process simulation will be executed in Aspen Plus Dynamics. The tuning was done using the Genetic Algorithm with tournament selection search method. Subsequently, the tuning results will also be implemented in Unisim Design to compare the control performance with previous research. The First Order Plus Dead Time (FOPDT) model is applied as the prediction model for MMPC. In this study, the FOPDT model used in MMPC in Matlab must be generated by converting the compressor output pressure unit into a percentage unit due to the MMPC in Matlab will interpret the calculation variables in percent units. For the set-point change, the best time sampling (T), prediction horizon (P), and control horizon (M) parameters that were obtained from the tournament selection tuning method in the simulation with Unisim design are 1 second, 18, and 3. For disturbance testinwere obtainedest parameters are 1 second, 341, and 121 that obtained by fine-tuning method. In the Matlab-Simulink-Aspen Plus Dynamics simulation, the best parameters T, P, and M for set-point changes are 0.05 seconds, 18, and 2, and for disturbance changes are 0.05 seconds, 7, and 1."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raihan Abdan Syakuran
"Formaldehida merupakan bahan kimia yang memiliki banyak kegunaan seperti bahan baku dalam pembuatan resin, disinfektan, serta pengawet. Pada proses produksi di pabrik, salah satu aspek yang memiliki peran penting adalah aspek pengendalian. Saat ini PT. X masih menggunakan pengendali Proportional-Integral (PI) yang masih memiliki sejumlah kekurangan. Dalam rangka mengatasi kekurangan yang dimiliki oleh pengendali PI, pengaplikasian pengendali MMPC dengan model gangguan dinilai mampu menghasilkan performa pengendalian yang lebih baik. Model empiris pada penelitian ini didapatkan dari penelitian sebelumnya yang telah dilakukan oleh Wahid dan Fauzi (2021), sedangkan model gangguan dibuat dengan bantuan process reaction curve dan perhitungan parameter First Order Plus Dead Time (FOPDT). Dalam memperoleh kinerja pengendalian yang optimal dilakukan proses tuning menggunakan metode Shridhar dan Cooper dan dioptimalkan dengan metode fine tuning. Kinerja pengendali MMPC dengan model gangguan diuji dengan perubahan Set Point (SP) dan ketahanan atas gangguan (disturbance rejection) dan diukur melalui perhitungan Integral Absolute Error (IAE) dan Integral Square Error (ISE). Pada uji perubahan Set Point (SP), pengendali MMPC berbasis model gangguan menghasilkan peningkatan kinerja dimana IAE mengalami penurunan yang berkisar dari 14,04-95,88% dan ISE mengalami penurunan yang berkisar dari 11,27-99,81%.

Formaldehyde is a compound that has many functions such as raw material of resin, disinfectant, and preservative. In the process production at the factory, one aspect that has significant role is controlling aspect. Currently PT X still uses Proportional-Integral controller which still has a few disadvantages. In order to overcome several disadvantages of PI controller, application of MMPC controller with disturbance model is considered to be able to achieve better control performance. Empirical model in this study was obtained from previous research conducted by Wahid and Fauzi (2021), while the disturbance model was made with the help of process reaction curve and First Order Plus Dead Time (FOPDT) parameters. In order to obtain optimal control performance, the tuning process is carried out using Shridhar and Cooper method and optimized by fine tuning method. The performance of the MMPC controller based on disturbance model was tested by changing the Set Point (SP) and the resistance to disturbance (disturbance rejection) and measured by calculating the Integral Absolute Error (IAE) and Integral Square Error (ISE). In the Set Point (SP) change test, the MMPC controller with the disturbance model result in increased performance, where IAE decreased about 14.04-95.88% and ISE decreased about 11.27-99.81%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adjisetya
"Hidrogen merupakan salah satu gas yang memiliki banyak kegunaan. Salah satunya pada industri kimia. Pabrik yang memiliki banyak gangguan akan berdampak pada efektivitas dan kestabilan operasi pabrik. Selain itu, pabrik yang memiliki banyak gangguan unit juga akan berpengaruh pada lingkungan sekitar. Unit kompresor dan steam reformer merupakan unit – unit yang penting dalam pabrik biohidrogen dari biomassa. Kompresor berfungsi untuk mencapai tekanan tinggi pada kondisi operasi selanjutnya dan steam reformer merupakan proses utama dari pabrik ini yang berfungsi untuk menghasilkan gas hidrogen.  Multivariable model predictive control (MMPC) merupakan suatu pengendali tingkat lanjut. Identifikasi model empirik berdasarkan berdasarkan first order plus dead time (FOPDT) untuk pengaruh gangguan ini dilakukan melalui metode process reaction curve (PRC). Dalam melakukan pengujian, model empirik yang digunakan pada MMPC yaitu model FOPDT yang diperoleh dengan metode 2 (Smith), serta penggabungan dengan model FOPDT MPC yang telah diperoleh pada penelitian sebelumnya yang telah dilakukan oleh oleh Wahid dan Taqwallah (2018). Untuk memperoleh kinerja pengendalian proses yang optimal dilakukan proses tuning atau penyetelan dengan menggunakan metode Shridhar dan Cooper, serta fine tuning untuk dibandingkan dengan kinerja pengendalian model predictive control (MPC) oleh Wahid dan Taqwallah (2018). MMPC fine tuning dengan model FOPDT yang diperoleh dengan metode 2 (Smith) tanpa penggabungan dengan model MPC memberikan hasil yang terbaik karena dapat menstabilkan aliran lebih cepat sesuai dengan setpoint. Parameter nilai T, P, dan M pada MMPC yang diperoleh yaitu 1, 341, dan 121 pada unit kompresor, serta 1, 45, dan 21 pada unit steam reformer. Peningkatan kinerja MMPC ini yaitu pada unit kompresor 1 yaitu 85,84%; unit kompresor 2 61,39%; unit kompresor 3 yaitu 94,57%; dan unit kompresor 4 yaitu 73,35%, serta pada unit steam reformer peningkatan kinerja MMPC fine tuning yaitu 63,34% pada heater dan 80,16% pada combustor.

Hydrogen is one of many gases that has many uses, one of which is in the chemical industry. A factory that has many units creates a lot of disturbances that affect on the effectiveness and stability of the plant's operation, and it will also affect the surrounding environment. Compressor unit and steam reformer are two of the important units in biohydrogen plant from biomass. The compressor works to achieve high pressure in the next operation and Steam Reformer is the main process of this plant which functions to produce H2 gas. Multivariable Model Predictive Control (MMPC) is an advanced controller.  The identification of the empirical model based on first order plus dead time (FOPDT) for the effect of this disturbance was carried out using the process reaction curve (PRC) method. The empirical model that used for the MMPC controller is the FOPDT model obtained by method 2 (Smith), as well as combining it with the MPC FOPDT model which has been acquired in previous research conducted by Wahid and Taqwallah (2018). To obtain optimal process control, a tuning process is carried out using the Shridhar and Cooper method, along with fine tuning to compare with the control performance of the model predictive control (MPC) by Wahid and Taqwallah (2018). Fine tuning MMPC controller with FOPDT model obtained by method 2 (Smith) without combining it with MPC model gives the best results because it stabilizes the flow faster based on setpoint. Parameter values of T, P, and M on the MMPC controller are 1, 341, and 121 on the compressor unit and 1, 45, and 21 on the steam reformer unit. Improvement of this MMPC on compressor unit 1 is 85.84%, compressor unit 2 61.39%, compressor unit 3 is 94.57%, and compressor unit 4 is 73.35%. In steam reformer unit, improvement of fine-tuned MMPC is 63.34% on heater and 80.16% on combustor.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ian Ajrin Rohman
"Dimetil eter (DME) merupakan senyawa yang potensial untuk dikembangkan menjadi bahan bakar berkelanjutan. Unit purifikasi metanol-air merupakan salah satu unit pada sintesis DME yang penting untuk dikendalikan agar metanol dapat dialirkan kembali ke proses sehingga efisiensi pabrik secara keseluruhan dapat meningkat. Penggunaan multivariable model predictive control (MMPC) pada proses ini dapat meningkatkan kinerja pengendalian dan menurunkan biaya modal dalam pembelian pengendali. Hal ini disebabkan karena MMPC dapat mengendalikan beberapa variabel dengan satu pengendali. Penyetelan MMPC yang dilakukan dengan Matlab melalui seleksi turnamen pada 888 kombinasi data tiap perubahan CV menunjukkan bahwa sampling time MMPC memiliki pengaruh yang sangat besar terhadap kinerja pengendalian. Nilai sampling time yang terlalu kecil akan menghasilkan sensitivitas yang terlalu besar dan menyebabkan perubahan parameter lainnya, yaitu prediction horizon dan control horizon, menjadi sulit dipahami karena polanya cukup acak. Metode penyetelan MMPC yang diusulkan berhasil mendapatkan nilai-nilai IAE dan ISE yang optimum dan secara umum dapat memperbaiki kekurangan dari penyetelan penelitian sebelumnya. Dari penelitian ini diperoleh pengendalian yang cukup optimum pada T=0,5; P=20; dan M=2.

Dimethyl ether (DME) is a compound that has the potential to be developed into a sustainable fuel. The methanol-water purification unit is important unit to be controlled in DME synthesis, to make sure that methanol can be flowed back into the process then increase the overall efficiency of the plant. The importance of using multivariable model predictive control (MMPC) in this process is to improve process control performance and reduce capital costs in purchasing controllers. It is because MMPC can control several variables with one controller. MMPC tuning performed with Matlab through tournament selection on 888 data combinations for each CV change shows that the MMPC sampling time has a very large influence on control performance. A sampling time value that is too small will result in a very high sensitivity and causes changes in other parameters, namely the prediction horizon and control horizon, to be difficult to understand because the pattern is quite random. The proposed MMPC tuning method has succeeded in obtaining optimum IAE and ISE values ​​and in general can correct the shortcomings of previous research settings. The best control was obtained at T=0.5; P=20; and M=2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library