Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Yuningsih Budiman
Abstrak :
Nanokomposit berbasis polimer yang didukung oleh oksida logam, menarik untuk dikembangkan sebagai katalis untuk produksi biodiesel. Dalam penelitian ini, nanokomposit selulosa/α-Fe2O3/ZrO2 telah berhasil disintesis dengan memanfaatkan limbah jerami padi sebagai sumber isolasi nanoselulosa, Zirkonium Oksida (ZrO2) disintesis melalui kopresipitasi, Hematite (α-Fe2O3) disintesis melalui kopresipitasi yang didukung oleh karakterisasi FTIR, XRD, SEM dan TEM. Hasil pengujian dengan SEM dan TEM menunjukkan morfologi isolasi nanoselulosa berupa fibril panjang dengan ukuran panjang sekitar 171 nm dan diameter 43 nm. Hasil pengujian XRD menunjukkan struktur Hematite (α-Fe2O3) dan Zirkonium Oksida (ZrO2) berupa fasa kristalin. Aktivitas katalitik diuji melalui reaksi esterifikasi metil laurat (biodiesel) dari asam laurat. Kondisi optimum reaksi esterifikasi diperoleh dengan jumlah katalis 2% terhadap asam laurat dan waktu reaksi 3 jam. Hasil persen konversi biodiesel menggunakan nanokomposit selulosa/α-Fe2O3/ZrO2 menunjukkan nilai terbaik sebesar 62,85%. Energi aktivasi konversi asam laurat menjadi produk pada penambahan nanokomposit selulosa/α-Fe2O3/ZrO2 sekitar 31,24 kJ.mol-1. Parameter kinetika dari reaksi dievaluasi mengikuti pseudo-orde pertama. Komposisi FAME ditentukan dengan GC-MS.
Nanocomposites of metal oxide supported by biopolymer are interesting to be developed as catalyst for biodiesel production. In this study, cellulose/α-Fe2O3/ZrO2 nanocomposite was successfully synthesized by utilizing rice straw waste as a source of nanocellulose biopolymer, Zirconium Oxide (ZrO2) was synthesized via coprecipitation, Hematite (α-Fe2O3) was synthesized via coprecipitation in which their characterizations were conducted by FTIR, XRD, SEM, and TEM. The composition of fatty acid methyl ester was determined using gas chromatography-mass spectroscopy. The results of testing with SEM and TEM show the morphology of nanocellulose isolation in the form of long fibrils with a length of about 171 nm and a diameter of 43 nm. The XRD test results showed Hematite (α-Fe2O3) and Zirconium Oxide (ZrO2) structures in the form of crystalline phase. Catalytic activity was tested by esterification of methyl laurate (biodiesel) from lauric acid. The optimum conditions for the esterification reaction were obtained by the amount of catalyst 2% against lauric acid and reaction time of 3 hours. The results of percent biodiesel conversion using cellulose/α-Fe2O3/ZrO2 nanocomposite showed the best value of 62.85%. The activation energy of lauric acid conversion into a product at the addition of cellulose/α-Fe2O3/ZrO2 nanocomposite is around 31.24 kJ.mol-1. The kinetic parameter of the reaction was also evaluated following the pseudo-first order equation.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54490
UI - Tesis Membership  Universitas Indonesia Library
cover
Imas Masriah
Abstrak :
Nanokomposit berbasis biopolimer yang didukung oleh oksida logam menarik untuk dikembangkan sebagai katalis untuk produksi biodiesel. Dalam penelitian ini, nanokomposit selulosa/CaO-gamma-Fe2O3 dan nanokomposit gamma-Fe2O3-selulosa/CaO berhasil disintesis dengan memanfaatkan limbah cangkang telur Gallus domesticus sebagai sumber CaO, maghemit (gamma-Fe2O3) disintesis melalui sol gel, dan jerami padi sebagai sumber sintesis nanoselulosa yang didukung oleh karakterisasi FTIR XRD, SEM, dan TEM. Nanokomposit selulosa/CaO-gamma-Fe2O3 dan gamma-Fe2O3-selulosa/CaO digunakan sebagai katalis dalam konversi minyak kelapa menjadi FAME. Kondisi optimum dengan jumlah katalis 9 mg, rasio metanol : minyak 12:1 pada suhu 60oC, nanokomposit selulosa/CaO-gamma-Fe2O3 mampu memberikan konversi 89,84 %. Konversi minyak kelapa menjadi produk menggunakan nanokomposit gamma-Fe2O3-selulosa/CaO pada suhu 60oC mencapai 90,67 % dalam kondisi optimum: rasio metanol:minyak 12:1, waktu reaksi 225 menit, dan jumlah katalis 6 mg. Energi aktivasi untuk reaksi menggunakan nanokomposit selulosa/CaO-gamma-Fe2O3 dan nanokomposit gamma-Fe2O3-selulosa/CaO diperoleh sebesar 19,11 kJ.mol-1 dan 17,45 kJ.mol-1. Parameter kinetika dari reaksi dievaluasi mengikuti persamaan pseudo-orde pertama. Komposisi FAME ditentukan dengan menggunakan kromatografi gas-spektroskopi massa.
Nanocomposites of metal oxide supported by biopolymer are interesting to be developed as catalyst for biodiesel production. In this study, nanocomposites cellulose/CaO-gamma-Fe2O3 and gamma-Fe2O3-cellulose/CaO were successfully synthesized by utilizing Gallus domesticus eggshell waste as the source of CaO, maghemite (gamma-Fe2O3) was synthesized via sol-gel method and rice straw as the source of nanocellulose biopolymer in which their characterizations were conducted by FTIR, XRD, SEM, and TEM. The composition of fatty acid methyl ester was determined using gas chromatography-mass spectroscopy. Nanocomposites of cellulose/CaO-gamma-Fe2O3 and gamma-Fe2O3-cellulose/CaO were used as catalysts for the synthesis of fatty acid methyl esters (FAME) from coconut oil through transeterification reaction with methanol. The optimal conditions using cellulose/CaO-gamma-Fe2O3 catalyst were obtained of 9 mg amount catalyst, methanol to oil ratio of 12:1 at 60oC, the cellulose/CaO-gamma-Fe2O3 nanocomposite was able to give conversion of 89.84% within 300 min of reaction. Meanwhile, the conversion of coconut oil into fatty acid methyl ester using gamma-Fe2O3-cellulose/CaO nanocomposite at 60oC was obtained 90.67% under these condition 12:1 methanol to oil ratio for 225 min with 6 mg catalyst. The activation energy for reaction using cellulose/CaO-gamma-Fe2O3 nanocomposite and gamma-Fe2O3-cellulose/CaO nanocomposite was found to be 19,11 kJ. mol-1 and 17,45 kJ. mol-1 . The kinetic parameter of the reaction was also evaluated following the pseudo-first order equation.
Depok: Universitas Indonesia, 2019
T52237
UI - Tesis Membership  Universitas Indonesia Library
cover
Cornelia Pradita Notoprajitno
Abstrak :
ABSTRAK
Selulosa sebagai bahan dasar untuk perban sedang banyak dipelajari karena kelarutannya dalam air, keberlanjutan, dan ketersediaannya di alam semesta. Nanoselulosa dapat diaplikasikan sebagai rangka pembalut luka hemostatik oleh karena keanekaragaman bentuk struktural, keringanan, dan portabilitas yang dimilikinya. Penelitian ini adalah bagian dari proyek multidisiplin yang bertujuan untuk merancang desain sebuah pembalut luka hemostasik untuk menangani kasus pendarahan yang eksesif. Dalam kasus ini, penelitian yang dilakukan berfokus pada perancangan struktur dan gugus fungsi. Rumput spinifex diolah secara mekanis (menggunakan high-pressure homogenise) dan secara kimiawi (menggunakan larutan campuran asam nitrat dan natrium nitrit) untuk mengisolasi nanoselulosa dengan morfologi dan gugus fungsi yang berbeda. Larutan nanoselulosa yang telah diolah kemudian dikeringkan menggunakan mesin freeze dryer. Proses pengeringan menghasilkan rangka pembalut luka dalam bentuk bulat dengan ketebalan, massa jenis, dan porositas yang bervariasi. Spinifex yang diolah secara mekanis menghasilkan nanofiber dengan fleksibilitas dan aspect ratio yang tinggi. Pemrosesan kimiawi menghasilkan nanofiber dengan struktur crystalline yang lebih kaku dengan gugus fungsi karboksilat. Gugus fungsi ini memiliki sifat hemostatik dan bakterisidal yang diperlukan dalam aplikasi pembalut luka. Dihipotesiskan bahwa perbedaan morfologi sebagai hasil dari kedua metode pemrosesan akan menghasilkan performa penggumpalan darah yang berbeda dalam aplikasi sebagai pembalut luka.
ABSTRACT
Cellulose-based scaffolds are investigated due to their water-solubility, sustainability, safety and abundance as a raw material. Scaffolds constructed of nanocellulose may potentially be applied in wound dressings due to their versatility in structural form, light weight, and portable properties which are essential for this application. This work is a part of a multidisciplinary project, which aims to design a haemostatic wound dressing in cases of severe bleeding. This study focuses mainly on engineering the scaffold and optimising its structure and surface functionality. Spinifex pulp was treated both mechanically (using a high-pressure homogeniser) and chemically (using a mixture of nitric acid and sodium nitrite) to isolate nanocellulose of different morphologies and surface functionalities. Different concentrations of nanocellulose solution were then freeze-dried to form round-shaped scaffolds with different thickness, density and porosity. Mechanically-treated grass resulted in flexible and high aspect ratio nanofibres. Nanofibres obtained from the chemical method are rigid crystalline cellulose nanofibres. Chemically treating the fibres also changed the surface chemistry from hydroxyl to carboxyl groups. These functional groups exhibit haemostatic and bactericidal properties, which is crucial in a wound dressing design. It is hypothesised that the morphologies attained from the two methods may potentially lead to different blood clotting attributes when applied as a haemostatic wound dressing.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Sari Triana
Abstrak :
ABSTRAK
Penumpukan sampah plastik terjadi karena penguraian plastik yang membutuhkan waktu hingga ratusan bahkan ribuan tahun. Bioplastik merupakan plastik atau polimer yang dapat dengan mudah terdegradasi secara alami. Pati merupakan bahan baku yang paling sering digunakan dalam pembuatan bioplastik karena sifatnya yang murah, dapat diperbarui, dan biodegradable. Namun, film berbahan dasar pati menunjukkan sifat mekanik dan daya tahan air yang buruk. Untuk mengatasi kelemahan tersebut, pati dapat dikombinasikan dengan material sintetis maupun alami. Nanoselulosa merupakan nanomaterial alami yang berasal dari selulosa dengan keunggulan berupa kuat tarik yang tinggi, kristalinitas yang tinggi, dan luas permukaan yang tinggi. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh konsentrasi nanoselulosa, temperatur gelatinisasi, dan pH gelatinisasi terhadap karakteristik bioplastik dan untuk mendapatkan formulasi terbaik dalam pembuatan bioplastik yang sesuai dengan standar kantong plastik. Pati yang digunakan berasal dari tepung tapioka komersial. Nanoselulosa diisolasi dari ampas tebu melalui proses dewaxing menggunakan pelarut benzena-metanol (2:1); bleaching menggunakan NaClO2 1 wt% pada suhu 80 oC selama 3 jam; penghilangan hemiselulosa menggunakan NaOH 17,5% pada suhu ruang selama 2 jam; hidrolisis asam menggunakan HCl 4 M pada suhu 80 oC selama 2 jam; dan ultrasonikasi selama 5 menit. Berdasarkan karakterisasi FTIR dan XRD, metode isolasi nanoselulosa yang dilakukan menghasilkan nanoselulosa dengan tingkat kristalinitas 27,3% dan ukuran kristal 161,424 nm. Sintesis biokomposit dilakukan dengan mencampurkan pati, nanoselulosa, akuades, dan plasticizer gliserol sebanyak 25% b/b. Konsentrasi nanoselulosa divariasikan dengan nilai 0, 1, 3, 5, 10, dan 15% b/b. Berdasarkan karakterisasi awal didapatkan nilai optimal kadar nanoselulosa adalah sebesar 10% b/b dan selanjutnya dijadikan basis dalam penelitian ini. Variasi temperatur terdiri atas 4 tingkatan, yaitu 75, 80, 85, dan 90 oC, sementara itu variasi pH terdiri atas 4 tingkatan, yaitu 4, 3, 2, dan 1, sehingga terdapat 16 unit percobaan. Karakterisasi biokomposit dilakukan dengan pengujian kekuatan mekanik berupa kuat tarik dan elongasi, uji daya serap air, serta uji biodegradabilitas dengan melakukan penguburan material pada tanah (soil burial test). Hasil terbaik diperoleh pada variasi temperatur 75 oC dan pH 3 dengan nilai kuat tarik sebesar 23 kgf/cm2, elongasi sebesar 6,67%, daya serap air sebesar 98%, dan dapat terdegradasi hingga 93,16% dalam waktu 10 hari.
ABSTRACT
Accumulation of plastic waste occurs because it can take hundreds, or even thousands of years to fully decompose. Bioplastics are plastics or polymers that can be easily degraded. Starch is the most common feedstock used to make bioplastic due to its inexpensive, renewable, and biodegradable properties. However, starch-based film exhibits poor mechanical properties and poor water barrier properties. In order to overcome these drawbacks, starch can be mixed with various synthetic and natural materials. Nanocellulose is a natural nanomaterial derived from cellulose consists of attractive properties, such as high tensile strength, high crystallinity, and high surface area. The aim of this research was to study the effect of nanocellulose concentrations, temperature of gelatinization, and pH of gelatinization on the bioplastic characteristics and to obtain the best formulation in making a good quality bioplastic according to the standards of plastic bag. The starch used obtained from commercial tapioca flour. Nanocellulose was isolated from sugarcane bagasse through a dewaxing process using benzene-methanol (2:1); bleaching using NaClO­2 1 wt% at 80 oC for 3 hours; hemicellulose removal using NaOH 17.5% at room temperature for 2 hours, acid hydrolysis using HCl 4 M at 80 oC for 2 hours; and continued with ultrasonication for 5 minutes. Based on FTIR and XRD characterizations, the nanocellulose isolation method produced nanocellulose with a crystallinity level of 27.3% and a crystal size of 161.424 nm. The synthesis of biocomposite is carried out by mixing starch, nanocellulose, distilled water, and glycerol as much as 25% w/w. The nanocellulose concentration was varied with values of 0, 1, 3, 5, 10, and 15% w/w. Based on the initial characterization, the optimal value of nanocellulose concentration was 10% w/w and to be used as the basis for this research. Gelatinization temperature consisting of 4 levels, there are 75, 80, 85, and 90 oC, while gelatinization pH consisting of 4 levels, there are 4, 3, 2, and 1, so that there are 16 experimental units. Biocomposite characterization was carried out by mechanical tests consisting of tensile strength and elongation at break, water absorption test, and soil burial test to determine biocomposite biodegradability. The result show that the gelatinization temperature of 75 oC at pH 3 produces the best characteristic of starch-nanocellulose biocomposite with tensile strength of 23 kgf/cm2, elongation at break of 6.67%, water absorption of 98%, and can be degraded up to 93,16% within 10 days.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Villojody Radyasthira
Abstrak :
uperabsorbent polymers (SAP) dapat dihimbau mendapatkan minat yang meningkat dari berbagai industry yang berbeda dalam beberapa tahun terakhir. Namun, mayoritas dari SAP diproduksi menggunakan petroleum sebagai bahan baku yang merupakan sebuah ancaman bagi lingkungan dikarenakan masa degradasi yang panjang. Polimer yang diproduksi dari selulosa merupakan sebuah alternatif yang menjanjikan dikarenakan properti biodegradasi. Efek dari crosslinking untuk biodegradasi SAP diuji terhadap beberapa properti yang berbeda. Literatur yang telah tercetak menunjukkan bahwa dengan crosslinking yang lebih kuat, maka daya tahan biodegradasi akan menjadi lebih tinggi. Namun, eksperimen pendahuluan yang telah dilakukan menunjukkan hasil yang berbeda. Selulase dari Trichoderma reesei di-analisa menggunakan beberapa teknik yang berbeda. Hasil analisis menunjukkan sebuah kecenderungan dimana biodegradasi terjadi lebih cepat di sampel yang telah di-crosslink. Alasan untuk hal tersebut, namun, tidak dapat ditentukan dikarenakan diluar cakupan riset. ......Superabsorbent polymers (SAPs) have seen an increase in interest from various different industries within the past few years. However, a majority of SAPs are produced using petroleum-based polymer which poses as a major environmental threat due to its long degradation period. SAPs produced from cellulose is a promising alternative due to its sustainable characteristics as well as its ease of biodegradation. The effect of crosslinking on the biodegradation of SAPs was tested. Current literature has shown that crosslinking increases stability and resistance to biodegradation. Nanocellulose foams, synthesized through a TEMPO-mediated oxidation process, were crosslinked using Hexamethylenediamine (HMDA) and tested through different analysis methods. UV-Vis spectrophotometry was used to analyse enzymatic activity, gas chromatography was used to test microbial activity, and high-performance liquid chromatography (HPLC) was used to analyse biodegradation testing. Cellulose from Trichoderma reesei was used as the enzyme for an enzymatic biodegradation process. The experimental results showed a trend which sees a higher rate of biodegradation in chemically crosslinked samples. This result may prove to be significant as it contradicts established literature. Experimental results, however, was unable to prove a possible reason relating to enzymatic activity due to unreproducible results. Other possible reasons were explored which includes HMDA crosslinking affecting the crystallinity and hydrophobicity of nanocellulose foam. These reasons have yet to be tested as it is outside the scope of research, however further research might prove beneficial as it may bring significant insight regarding crosslinking.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Intan Rahayu
Abstrak :
Sintesis nanokomposit dari nanoselulosa sekam padi dan zat anorganik telah dibuat. Digunakan TiO2 sebagai zat anorganik sehubungan dengan sifatnya yang green chemistry. Selulosa di isolasi dari sekam padi dengan tahapan maserasi lemak dengan toluena : etanol(2:1). Penghilangan hemiselulosa dan lignin dengan menggunakan NaClO2 1,4% pH asam. Rendemen selulosa yang diperoleh adalah 46,169 % untuk metode I dan 31,178 % untuk metode II. Spektrum FTIR selulosa menunjukkan hilangnya lignin pada bilangan gelombang 1750 cm-1 untuk selulosa metode I sedangkan selulosa metode II masih terdapat lignin. Indeks kristalinitas dari selulosa diperoleh dari analisis XRD sebesar 60,265% untuk selulosa I sedangkan selulosa II 53,78%. Rendemen nanoselulosa yang disintesis dari selulosa sekam padi menurun dengan meningkatnya konsentrasi asam sulfat. Indeks Kristalin dari nanoselulosa yang diperoleh dari analisis XRD sebesar 80% untuk konsentrasi asam sulfat 60%. Analisis dengan SEM menunjukkan morfologi permukaan nanoselulosa yang halus merata. Analisis dengan TEM menunjukkan ukuran partikel yang cukup baik dengan naiknya konsentrasi asam sulfat. Ukuran yang terbaik di peroleh dengan menggunakan asam sulfat 60% yaitu 100 x 30 nm. Nanokomposit dapat diperoleh dengan impregnasi zat anorganik TiO2 pada nanoselulosa, hal ini ditunjukkan dengan FTIR dan TEM.
Synthesis of cellulose rice husk nanocomposite and inorganic substances have been made. TiO2 is used as inorganic substance with respect to the nature of green chemistry. Cellulose in isolation from rice husk with maceration stage fat with toluene:ethanol (2:1). The elimination of hemicellulose and lignin by using NaClO2 1.4% acidic pH. The yield of cellulose obtained was 46.169% to of the methods I and 31.178% to the method II. FTIR spectra at wave number 1750 cm-1 showed a loss of lignin cellulose for method I while the cellulose method II still contained lignin. Crystallinity index of cellulose obtained from XRD analysis of 60.265% for the first cellulose while the cellulose II 53,78%. The yield synthesized nanocellulose from rice husk cellulose decreased with increasing concentrations of sulfuric acid. Crystalline index of nanocellulose obtained from XRD analysis of 80% to 60% concentration sulfuric acid. Analysis by SEM showed a smooth surface morphology nanoselulosa evenly. Analysis by TEM showed the particle size is pretty good with the increasing concentration of sulfuric acid. The best size is obtained by using sulfuric acid 60%, 100 x 30 nm. Nanocomposite can be obtained by impregnating an inorganic substance TiO2 on nanocellulose, as shown by FTIR and TEM.
2016
S65846
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahmy Husin Bagis
Abstrak :
The study of nanocellulose has been emerging due to its highly possible applications. The main objective of this research is to fabricate nanocellulose crystalline filament from Sugarcane Bagasse through wet-spinning method. Sugarcane Bagasse is chosen due to its abundance in Indonesia and high cellulose content. In this research, the Sugarcane Bagasse were mechanically treated in order to minimize the size. Secondly, the biomass is pre-treated with NaClO2 (Bleaching) in order to eliminate lignin and hemicellulose. Thirdly, the biomass is treated with Acid Hydrolysis. The variation used in Acid Hydrolysis is HCl with 1, 3, and 5. After obtaining Nanocellulose Crystalline, the biomass was spun through wet-spinning method using 16G needle, 18G needle, 1.5, and 2 in concentration as the variation. The wet spinning method used a coagulating bath that is filled with Acetone. The characterization used in this research would be Cellulose Content Test, TEM, XRD, and Tensile Strength Test. The average results of this research are 42.75 on cellulose isolation, 63.9 on CNC crystallinity index, 45.3 nm on particle size, and 4.3 lbs on tensile strength at fracture with 11.91 on elongation. Nanocellulose Filament used in this research would be applicable for the future textile and material industry that possibly replace fossil fuel-based material.
Studi tentang nanoselulosa telah muncul karena pengaplikasian yang sangat memungkinkan. Tujuan utama dari penelitian ini adalah untuk membuat filamen kristal nanoselulosa dari ampas tebu melalui metode pemintalan basah atau wet spinning. Ampas tebu dipilih karena kelimpahannya di Indonesia dan kandungan selulosa yang tinggi. Dalam penelitian ini, ampas tebu diperlakukan secara mekanis untuk meminimalkan ukuran. Kedua, ampas tebu diolah dengan NaClO2 (Bleaching) untuk menghilangkan lignin dan hemiselulosa. Ketiga, ampas tebu diperlakukan dengan Hidrolisis Asam. Variasi yang digunakan dalam Hidrolisis Asam adalah HCl dengan 1, 3, dan 5. Setelah memperoleh Nanocellulose Crystalline (CNC), biomassa dipintal melalui metode pemintalan basah menggunakan jarum 16G, jarum 18G, konsentrasi 1,5, dan 2 sebagai variasi. Metode pemintalan basah menggunakan rendaman koagulasi yang diisi dengan Aseton. Karakterisasi yang digunakan dalam penelitian ini adalah Uji Konten Selulosa, TEM, XRD, dan Uji Kekuatan Tarik. Hasil rata-rata dari penelitian ini adalah 42,75 pada isolasi selulosa, 63,9 pada indeks kristalinitas CNC, 45,3 nm pada ukuran partikel, dan 4,3 lbs pada kekuatan tarik pada fraktur dengan 11,91 pada perpanjangan. Filamen Nanoselulosa yang digunakan dalam penelitian ini akan berlaku untuk industri tekstil dan material yang mungkin dapat menggantikan bahan berbasis bahan bakar fosil di masa yang akan datang.
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library