Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 15 dokumen yang sesuai dengan query
cover
cover
Dieter Rahmadiawan
Abstrak :
Telah dilakukan kegiatan penelitian mengenai pembuatan dan analisis nanofluida bio berbasis serat bacterial cellulosa nata de coco dengan modifikasi 2,2,6,6- Tetramethylpiperidine-1-oxyl (TEMPO). Pertama, serat mentah yang berbentuk pelikel diproses hingga menjadi film. Proses penghancuran serat kemudian dilakukan dengan menggunakan grinder hingga bentuk serat menjadi bubuk. Kemudian, serat dicampur dengan TEMPO untuk melemahkan ikatan hidrogen pada serat. Serat yang sudah dimodifikasi kemudian dicampurkan ke dalam fluida dasar oli polyol ester (POE) beserta nonionic surfaktan Span 60. Surfaktan bertujuan untuk membentuk tolakan stearic antara partikel serat. Uji yang dilakukan adalah berupa karakterisasi, stabilitas, viskositas, konduktivitas thermal, dan tribologi. Analisa Life Cycle Assessment (LCA) juga dilakukan untuk mengetahui seberapa besar pengaruh penelitian ini terhadap lingkungan. Terdapat peningkatan viskositas dengan pemberian serat nata de coco. Koefisien friksi (COF) terendah diperoleh oleh sampel N2S4 dengan peningkatan sebesar 40% dibandingkan dengan POE. Dapat disimpulkan bahwa hasil ini dapat menjadikan serat nata de coco sebagai aditif pelumas yang mengurangi friksi dan meningkatkan viskositas
Research activities had been carried out on the synthesis and analysis of bio nanofluids based on bacterial cellulose nata de coco fibers with a modification of 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO). Firstly, the raw nata de coco in the form of pellicles are processed into films. The process of cellulose crushing was carried out using a grinder to form the cellulose into powder. Then, the dried cellulose was modified with TEMPO to weaken its hydrogen bonding. The modified cellulose was then mixed into the polyol ester (POE) base fluid along with the nonionic surfactant Span 60. The aim of the surfactant is to form a stearic repulsion between cellulose particles. Characterization, stability, viscosity, thermal conductivity, and tribology were successfully conducted. Life Cycle Assessment (LCA) analysis was also conducted. There was an increase in viscosity with the provision of nata de coco fiber. The lowest coefficient of friction (COF) was obtained by the N2S4 sample with 40% increament compared to POE. It can be concluded that nata de coco fiber has a potential as a lubricant additive that reduces friction and modifiy viscosity
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ruth
Abstrak :
Hidrogel adalah salah satu jenis polimer yang dapat menyerap dan menyimpan air di dalam tubuhnya dalam jumlah besar. Salah satu parameter kinerja hidrogel adalah swelling ratio. Swelling ratio dipengaruhi oleh berbagai faktor seperti morfologi hidrogel dan sifat bahan penyusun dari hidrogel. Pada penelitian ini diuji 2 sumber selulosa yaitu nata de coco dan eceng gondok. Selulosa keduanya diisolasi dan dijadikan bubuk. Selulosa dari kedua sumber diturunkan menjadi selulosa karboksimetil. Selulosa karboksimetil dijadikan hidrogel dengan menggunakan agen pengikat silang berupa asam sitrat dengan konsentrasi yang divariasikan yaitu 10, 15, dan 20 w/w CMC. Setiap hidrogel yang terbentuk akan diuji rasio pembengkakkan pada jam ke-1, 2, 3 dan 24. Hasil uji FTIR menunjukan bahwa baik selulosa, CMC maupun hidrogel sudah tebentuk dengan baik. Hasil uji swelling menunjukkan bahwa pada konsentrasi 10 dan 15 hidrogel yang terbentuk tidak stabil atau memiliki fraksi gel yang rendah, namun rasio pembengkakkan yang tinggi. Sedangkan untuk konsentrasi asam sitrat 20, hidrogel stabil dan hidrogel nata de coco memiliki swelling ratio yang tertinggi mencapai 2291. Untuk hybrid CMC nata de coco dan CMC eceng gondok 50:50 pada konsentrasi 20 terbentuk hidrogel dengan fraksi gel yang tinggi dengan swelling ratio dibawah hidrogel dari CMC yang bukan campuran yaitu sebesar 1171.
Hydrogel is one type of polimers that is able to absorp and retain water in huge amount in its body. A parameter of performance of hydrogel is swelling ratio In this research we use water hyacinth and nata de coco. Cellulose that contains in both material is being isolated until powdered cellulose is being achieved. Both type of cellulose is then being converted into CMC. Carboxymethylcellulose was converted into hydrogel using citric acid as crosslinker in aqueous solution. Concentration of citric acid has been variated into 3 variations, 10, 15, 20 w w CMC. For each hydrogel formed, it has been assesed in term of performance, existence of functional group and morphology. Swelling ratio assessment was conducted per hour, which is swelling ratio at 1st, 2nd, 3rd and twenty 24th hour. The result of FTIR showed that cellulose, CMC and hydrogel was succeeded to be formed. Swelling ratio assessment showed that at concentration of 10 and 15 the hydrogel gives huge swelling ratio but very poor in term gel fraction and stability. At concentration of 20 hydrogel found stable and had selling ratio of 2291 for nata de coco and 1862 for waterhyacinth. Finally for hybrid hydrogel at concentration of 20 citric acid and ratio of mixing between CMC nata de coco and CMC water hyacinth of 50 50, hydrogel formed shows good gel fraction but with decreasing swelling ratio which was 1171.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrea Baskoro Prabowo
Abstrak :
Serat nata de coco memiliki karakteristik biodegradable, memiliki formasi kristalinitas serat, dan memiliki struktur fisik baik sehingga cocok dikembangkan menjadi material superkuat. Pada penelitian ini dilakukan pemasukan filler nanosilika ke dalam serat nata de coco dengan menggunakan metode post modification (perendaman), serta dipadukan dengan beberapa variasi resin dengan teknik handlay up untuk mendapatkan material komposit yang lebih kuat. Dari hasil pengujian SEM-EDX didapat nanosilika terdistribusi merata di dalam serat, jumlah nanosilika yang masuk ke dalam serat sebanding dengan lama perendaman. Dari hasil uji mekanik didapatkan lama perendaman yang optimum adalah 3 hari karena meningkatkan kuat tarik serat dari 85.6 MPa menjadi 316 MPa. Material komposit yang tertinggi kuat tariknya adalah variasi resin polyamide+epoxy yang mencapai kuat tarik sebesar 96.2 MPa. ......Nata de coco fiber has the characteristic of biodegradable, has a crystallinity of fiber formation, and has a good physical structure so that suitable to be developed into high strength material. In this study has been carried out nanosilica filler dispersing into nata de coco fiber using post modification (immersion) method, and making composite nata de coco fiber with some variation of resin using handlay up technique to get stronger composite materials. From the SEM-EDX results found that nanosilica distributed uniformly in the fibers, amount of nanosilica dispersed in the fiber is proportional to the long of immersion. Mechanical test results showed that the optimum immersion time is 3 days because it increases the tensile strength of fiber from 85.6 MPa to 316 MPa. Composite material with the highest tensile strength is a variation of polyamide+epoxy resin with 96.2 MPa of strength.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1129
UI - Skripsi Open  Universitas Indonesia Library
cover
Denar Zuliandanu
Abstrak :
Industri nata de coco merupakan salah satu agroindustri yang menghasilkan limbah cair bersifat asam, berbau tidak sedap, dan mengandung polutan organik konsentrasi tinggi. Pendekatan biological treatment menggunakan lumpur aktif pada pengolahan limbah terkadang menjadi masalah yakni mikroba yang digunakan mati/inaktif dan memerlukan penyesuaian pH. Degradasi fotokatalitik diyakini mampu memperbaiki kekurang pengolahan limbah dengan cara lumpur aktif atau menjadi komplemen dalam sistem gabungan beberapa cara pengolahan. Titanium dioksida (TiO2) banyak digunakan sebagai fotokatalis karena memiliki sifat yang stabil, ramah lingkungan, dan murah. Kombinasi TiO2 bulky diubah ke dalam bentuk nanotube yang lebih baik secara morfologi kemudian dilakukan modifikasi dengan logam platina (Pt) agar pita serapan bergeser ke daerah sinar tampak serta dilekatkan pada film gelas konduktif FTO (fluorine-doped tin oxide). Hasil penelitian menunjukkan bahwa semakin tinggi konsentrasi Pt pada katalis membuat kinerja fotokatalitik yang lebih baik. Hasil ini juga didukung oleh data fotoelektrokimia yang menghasilkan densitas arus tertinggi oleh fotokatalis Pt-TNT/FTO 65 mM yakni 0,0031 mA/cm2. Variasi suhu kalsinasi memberikan respon fotokatalitik yang berbeda. Fotokatalis Pt-TNT/FTO-450 menunjukkan kinerja paling baik dengan densitas arus puncak 0,0123 mA/cm2 serta nilai reflektan paling rendah dari data spektrum UV-Vis DRS. Sejalan dengan karakterisasi, hasil aplikasi fotodegradasi terhadap air limbah produksi nata de coco berhasil diturunkan. Laju fotodegradasi terbesar dihasilkan oleh fotokatalis Pt-TNT/FTO 65 mM yang mampu mendegradasi asam asetat, COD, dan amonia berturut-turut yakni 49,16%, 59,09%, 70,08% pada lama penyinaran 8 jam .....The nata de coco industry is one of the agro-industries that produce acidic liquid waste, have a terrible smell, and contain high concentrations of organic pollutants. The biological treatment approach using activated sludge in wastewater treatment sometimes becomes a problem; namely, the microbes used are dead/inactive and require pH adjustment. Photocatalytic degradation is believed to be able to improve the lack of wastewater treatment by using activated sludge or be a compliment in a combined system of several treatment methods. Titanium dioxide (TiO2) is widely used as a photocatalyst because it is stable, environmentally friendly, and inexpensive. The combination of bulky TiO2 was converted into a morphologically better nanotube form and then modified with platinum metal (Pt) so that the absorption band shifted to the visible light region and was attached to a conductive glass film FTO (fluorine-doped tin oxide). The results showed that the higher the concentration of Pt in the catalyst. Evidence shows a shift in photocatalyst absorption from UV to visible light. Photoelectrochemical data supported this result. The “Pt-TNT/FTO 65 mM” photocatalyst produces the highest current density (0.0031 mA/cm2). In addition, the Pt-TNT/FTO-450 photocatalyst showed the best performance with a peak current density of 0.0123 mA/cm2 and showed the lowest bandgap. The developed photoelectrode showed an excellent result in degrading the organic pollutants from Nata De Coco wastewater. The highest photodegradation rate was produced by Pt-TNT/FTO 65 mM photocatalyst. It eliminated acetic acid, lowered COD value, and eliminated ammonia, respectively, namely 49.16%, 59.09%, 70.08% at 8 hours of irradiation time
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Darmansyah
Abstrak :
Indonesia adalah negara yang memiliki potensi besar dalam sumber daya alam, potensi-potensi alam tersebut yang dapat dikembangkan salah satunya adalah serat alam. Serat alam yang cukup potensial untuk dikembangkan lebih jauh saat ini adalah serat nata de coco. Nata de coco adalah hasil proses fermentasi air kelapa dengan menggunakan bakteri Acetobacter xylinum. Secara kimiawi, serat yang terkandung di dalam nata de coco adalah selulosa, dimana saat ini serat selulosa telah diaplikasikan untuk berbagai keperluan lain, misalnya untuk diafragma transduser, kulit buatan, bahan pencampuran kertas, karbon film elektrokonduktif dan lain sebagainya. Untuk mendapatkan material serat yang kuat diperlukan perlakuan khusus, yaitu dengan menambahkan material lain seperti nanofiller SiO2, Al2O3, dan clay, lalu dipadukan dengan berbagai jenis resin, sehingga material komposit berbahan dasar serat tersebut, memiliki sifat yang lebih kuat dari logam alloy dan material high strength lainnya. Dalam penelitian ini telah dilakukan pembuatan serat nata de coco dan komposit serat-filler-resin, yang mana variasi nutrisi dan pH yang paling baik adalah variasi dengan konsentrasi gula 2,0% w/v; urea 0,5% w/v dan asam asetat 0,3% v/v (pH 3,8), variasi ini menghasilkan tebal serat basah sekitar 14,57 mm dan massa serat sekitar 595 gram dari 700 ml media air kelapa. Dari karakterisasi dengan menggunakan XRD diketahui bahwa struktur serat nata de coco yang dibuat adalah material serat selulosa dengan puncak intensitas utama terletak pada posisi 2θ di antara 26º ? 26,5º. Sedangkan pengujian dengan menggunakan SEMEDX menunjukkan bahwa nanofiller telah terdistribusi merata di dalam serat. Dan dari uji mekanik dengan menggunakan alat uji kuat tarik (Ultimate Tensile Strength) diketahui pula bahwa serat nata de coco murni memiliki kuat tarik sebesar 390,39 MPa dan young modulus sekitar 11,198 GPa.
Indonesia is the country that has great potential of natural resources, natural potentials that can be developed is a natural fiber. One of the potential natural fibers that can be developed at this time is nata de coco. Nata de coco is a result of fermentation of coconut water using the bacteria Acetobacter xylinum. Fiber contained in the Nata de coco is cellulose, cellulose fibers, where it currently has can be applied to various other purposes such as the diaphragm transducer, artificial leather, paper mixing materials, carbon film electro-conductive and etc. To obtain a strong fiber material required special treatment, namely by adding other materials such as nanoparticles of SiO2, Al2O3, and clay, then combined with various types of resin, so that the composite fiber materials have properties that are stronger than metal alloy and other material high strength. In this study has been carried out making nata de coco fiber and composite fiber-resin-filler, in which variations of nutrients and pH is the best concentration variation of sugar 2.0% w/v; urea 0.5% w/v and acetate acid 0.3% v/v (pH 3.8), this variation produces a thick fiber of about 14.57 mm and wet mass fiber of approximately 595 grams for 700 ml medium of coconut water. From the XRD pattern is known that the structure of pure nata de coco fiber is cellulose fiber material with the main peak intensity located 2θ positions around 26º ? 26,5º. While for the examination by using SEM-EDX is known that the filler material has been distributed uniformly in the fiber. And from mechanical tests using The Ultimate Tensile Strength is shown that pure nata de coco fiber has tensile strength of 390.39 MPa and young modulus around 11,198 GPa.
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27911
UI - Tesis Open  Universitas Indonesia Library
cover
Asep Handaya Saputra
Abstrak :
The electronic industry’s need for semiconductor material is increasing each year due to technology’s rapid development. Semiconductor material has an electric conductivity of approximately 10-8-103 S/cm, and it is used as an important component in electronic devices. Semiconductor material is generally made of plastic modified with conductive filler. The problem with using semiconductor material is that the discarded components can be plastic waste that requires significant time to degrade; therefore, the synthesis of semiconductor material from natural substances must be observed. One of these natural substances is nata de coco fiber modified with a conductive filler. The impregnation method is used in the synthesis of the nata de coco fiber composite. The fillers used in this study are ZnO and silica, and the size of the filler particle and the concentration of the filler suspension are used as variations. From the SEM-EDX results, it can be seen that the filler is successfully deposited on the nata de coco fiber. Silica filler gives a higher conductivity than ZnO filler because of its lower energy band gap. The highest conductivity result is obtained from the composite impregnated in a 0.3-0.4 mm particle diameter of filler with 3% w/v suspension concentration for three days, producing the conductivity result of 6.95×10-6 S/cm for ZnO filler and 10.1×10-6 S/cm for silica filler, or about 16 times higher than the conductivity of nata de coco fiber.
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:7 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Sealtial Mau
Abstrak :
Penggunaan energi yang effisien menjadi tantangan dunia saat ini untuk terus ditingkatkan. Berbagai metode terus dikembangkan oleh para peneliti dan ilmuan untuk mencapai apa yang diharapkan. Dalam sistem perpipaan, energi dibutuhkan untuk dapat menggerakkan fluida yang akan dialirkan. Ilmu mekanika fluida berperan penting untuk dapat mengkarakteristik  fluida saat mengalir. Secara umum fluida dibagi menjadi dua kelompok yaitu fluida Newtonian dan non-Newtonian.  Fluida dapat dapat mengalir dengan effisien dalam sistem perpipaan ketika hambatan dapat diatasi. Kerugian energi yang dibutuhkan untuk memindahkan fluida disebut kerugian jatuh tekanan. Singkatnya, sumber energi pompa untuk sistem perpipaan sebanding dengan hambatan dan fluida yang dialirkan. Pengurangan hambatan dapat dilakukan melalui kontrol aliran yang dibagi menjadi dua kelompok yaitu kontrol aktif dan kontrol pasif. Kontrol aktif diaplikasikan dengan cara menambahkan zat aditif sedangkan kontrol pasif dengan memberi perlakuan melalui geometri saluran perpipaan. Dalam penelitian ini kontrol aktif dan kontrol pasif diaplikasikan. Aplikasi kontrol aktif dengan menambahkan aditif serat nata de coco ke dalam fluida dasar air dan kontrol pasif dengan menggunakan pipa spiral 3-lobe untuk mengalirkan lumpur. Aplikasi serat nata de coco sebagai aditif untuk dapat mereduksi hambatandrag pada buffer region. Konsentrasi yang digunakan ialah 25 ppm, 50 ppm dan 100 ppm yang dialirkan pada rangkaian uji pipa horizontal dengan pengukuran nilai pressure drop pada jarak 1000 mm. Selain itu, aplikasi pipa spiral 3-lobe untuk mengatasi pengendapan aliran lumpur melalui kecepatan tangensial yang dihasilkan oleh geometri pipa spiral itu sendiri. Fluida kerja lumpur yang digunakan dalam penelitian ini divariasikan dalam beberapa konsentrasi yakni Cw 20%, 30% dan 40%. Fluida kerja yang dialirkan melalui sistem perpipaan disetup secara horizontal serta pengukuran 'pressure drop' melalui dua titik dengan jarak 1550 mm. Untuk pengujian debit pada dua metode ini digunakan untuk menghitung bilangan Reynolds. Dari hasil perhitungan diketahui bahwa aplikasi serat 'nata de coco' pada pipa dapat meningkatkan pengurangan hambatan 'drag' melalui mereduksi 'drag' yang terjadi pada 'buffer layer'. Selain itu, aplikasi pipa spiral untuk mengalirkan lumpur terbukti menurunkan kecepatan kritis pada aliran jika dibandingkan dengan pipa bulat. ...... The efficient use of energy is a challenge for the world today to increase continuously. Various methods continue to be developed by researchers and scientists to increase the expected. In the piping system, the energy needed to flow the fluid. Fluid mechanics plays an important role in being able to characterize fluid flow. In general, fluids divided into two groups, namely Newtonian and non-Newtonian fluids. Working fluid will be flow efficiently in the piping system when obstacles can be overcome. Energy losses needed to flow the fluid is called the pressure drop. In brief, the energy source of the pump for the piping system is proportional to the obstacles and the streamed fluid. To reduce the obstacles, flow control is used and divided into two groups namely active control and passive control. Active control is applied by adding additives while passive control by treats or change the geometry of the pipeline channel. In this study, active control and passive control applied. Active control by adding nata de coco fiber additive becomes based fluid and passive control by using a 3-lobe spiral pipe to flow the slurry. The application of nata de coco fiber as an additive can reduce drag resistance in the buffer region. The concentrations used are 25 ppm, 50 ppm, and 100 ppm, which are flowed in the horizontal test pipe circuit by measuring the pressure drop at a distance of 1000 mm. In addition, the 3-lobe spiral pipe application to overcome the particle deposition in mudflow through tangential velocity generated by the geometry of the spiral pipe. The working fluid used in this study varied in several concentrations namely Cw 20%, 30%, and 40%. The working fluid that flowed through the piping system set up horizontally and the measurement of pressure drop through two points with a distance of 1550 mm. The mass flow rate testing on both methods used to calculate Reynolds numbers. From the calculation results, it is known that the application of nata de coco fiber in pipes can increase the drag reduction by reducing the drag that occurs at the buffer region. Also, the application of 3-lobes spiral pipe to flow the slurry has been shown to reduce the critical velocity inflow when compared to circular pipes.
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2697
UI - Disertasi Membership  Universitas Indonesia Library
cover
Annisa Shaira Dewi
Abstrak :
Defisiensi riboflavin (vitamin B2) banyak terjadi pada negara berkembang, seperti Indonesia. Sebagai penghasil kelapa no.2 di dunia, peningkatan riboflavin dapat dilakukan pada produk dari kelapa, yaitu nata de coco. Pada starter nata de coco dilakukan variasi rasio penambahan minyak kelapa sawit, optical density (OD), dan pelarut inokulum yang digunakan. Pengukuran dilakukan dengan metode optical density menggunakan spektrofotometer pada panjang gelombang 444 nm. Hasil penelitian ini menunjukkan bahwa penambahan minyak kelapa sawit dapat meningkatkan produksi riboflavin bakteri Acetobacter xylinum pada starter nata de coco. Konsentrasi riboflavin tertinggi sebesar 5,77 mg/L diperoleh pada starter dengan penambahan 90 g/L minyak kelapa sawit dengan OD dua dan air kelapa sebagai pelarut inokulum. ......Deficiency of riboflavin (vitamin B2) occurs in many developing countries, like Indonesia. As the world's No.2 coconut producer, increased riboflavin can be performed on the product of the coconut, such as nata de coco. On the nata de coco starter, the ratio of the addition of palm oil, optical density (OD), and the inoculum solvents are vary. Measurements were taken with an optical density method using a spectrophotometer at 444 nm. The results of this study show that adding palm oil can increase the riboflavin production of Acetobacter xylinum in nata de coco starter. The highest riboflavin concentration of 5.77 mg/L was obtained at the starter with the addition of 90 g/L palm oil with OD two and coconut water as an inoculum solvent.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1154
UI - Skripsi Open  Universitas Indonesia Library
cover
Sundari Attamimi
Abstrak :
Penelitian telah dilakukan untuk memperoleh strain khamir penghasil mikosin yang dapat membunuh isolat-isolat khamir kontaminan santan dan produk nata de coco. Penelitian dilakukan di Laboratorium Mikrobiologi, Departemen Biologi, FMIPA-UI, Depok dari Desember 2006 - Mei 2007. Khamir-khamir yang digunakan adalah 18 strain khamir UICC dan 11 isolat khamir kontaminan santan dan produk nata de coco. Penapisan aktivitas mikosin menggunakan metode gores pada Killer Medium Agar (KMA) dengan pH 4,4 dan mengandung metilen biru. Hasil penapisan menunjukkan bahwa 18 strain khamir positif menghasilkan mikosin terhadap 11 isolat khamir kontaminan santan dan produk nata de coco. Pengujian aktivitas mikosin secara semi kuantitatif menggunakan metode sumur dan jumlah sel khamir penghasil mikosin yang digunakan adalah 1,2x108 sel/ml sedangkan jumlah sel khamir kontaminan adalah 3x107 sel/ml. Hasil pengujian menunjukkan bahwa sebanyak 14 strain khamir positif menghasilkan mikosin terhadap tiga isolat khamir kontaminan dari santan. Dua belas strain memiliki aktivitas mikosin dengan spektrum luas sedangkan dua strain memiliki aktivitas mikosin dengan spektrum sempit. Candida rancensis C. Ramirez & A.E. Gonzales UICC Y-326 dan Rhodotorula sp. F.C. Harrison UICC Y-332 menghasilkan mikosin yang paling banyak membunuh isolat-isolat khamir kontaminan dari santan dibandingkan dengan 12 strain khamir mikosinogenik lainnya.
Depok: Universitas Indonesia, 2007
S31457
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>