Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Fakultas Teknik Universitas Indonesia, 1999
S50827
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sugianto Soenario
Abstrak :
Oksidasi parsial metana menjadi produk Iain yang Iebih berdaya guna sepeni metanol dan fomxaldehid, telah menjadi perha1ian para peneliti. Masalah utama da|am konversi metana tersebut adalah ikatan C-H dari CH4 lebih kuat dari molekul lain, sehingga kondisi operasi hams dapat memutuskan kekuatan ikatan C-H yang pertama (mst C-H bond) dan molekul CH4 (104 kkaumol) dan mengontrol produk oksigenat yang terjadi supaya tidak teroksidasi lebih lanjut menjaci oksida karbon.

Pada penelitian ini, penulis menguji keaklifan katalis garam heteropoli Cu@.(PW12O4n)z [disingkat CuPW| pada reaksi oksidasi parsial metana. Preparasi CuPW dilakukan dengan mensubstitusi atom H dari asam H3PW12O4° dengan Iogam Cu dari Cu(N03)2.3H2O. lnti aklif Cu dkend mempunyai kemampuan baik untuk oksidasi parsial metana. Karakterisasi inframerah, Iuas pem1ukaan, kemampuan adsorpsiadesorpsi secara kualjtatif maupun kuantitatif dilakukan untnk mendapatkan data-data penunjang.

Pengujian aktifitas katalis dilakukan pada reaktor unggun tetap dan, pada kondisi : rentang suhu 300 - 700 °C, tekanan 1 atmosfir, rasio CHJO2 = 9 dan WIF dan V25 sampai dengan 'hm [gr-kat.min!ml]. Produk akhir yang diperoleh adalah CO, CO2, HQO, dan CHOH tanpa terbentuk CH3OH, dengan selektivitas C02 dan H20 terbesar. Hasil terbaik untuk memperoleh fonnaldehid, cnberikan oleh katalis Cua(PW12O4o)z pada temperatur 600 °C dan Iaju alir 'hm [gr-katminlmll dengan selekivitas CHOH sebesar 0,456 %, yield CHOH 0,012 % dan konversi metana 2,559 %.

Analisis kemampuan adsorpsi-desorpsi katalis terhadap oksigen dan metana memperlihaikan bahwa katalls mampu mengadsorp keduanya dengan kekuatan yang bersaing, sehingga rasio umpan merupakan faktor yang peming dalam reaksi oksidasi parsial.
Depok: Fakultas Teknik Universitas Indonesia, 1996
S48889
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gustian Jaya
Abstrak :
Studi oksidasi parsial metana ini dilakukan untuk mempelajari karakterisasi dan kinerja katalis Cu3(PW12040)2 (CuPW) dan Cu (II) zeolit alam yang diaktifkan (Cu-Z). Kedua katalis tersebut dipreparasi dengan metode pertukaran ion. Percobaan ini menggunakan reaktor unggun tetap dengan melihat pengaruh suhu (400-700°C), rasio umpan CH4/O2, dan rasio berat katalis terhadap laju alit umpan (W/F) pada tekanan atmosferik. Hasil karakterisasi menunjukkan bahwa CuPW mempunyai luas permukaan (3,38 m²/gram) yang jauh lebih kecil dari Cu-Z (62,67 m²/gram) akan tetapi kandungan Cu (II) di CuPW (4,2%) jauh lebih besar dari Cu-Z (0,5%). Kekuatan adsorpsi Cu-Z terhadap metana lebih besar dari CuPW yang ditunjukkan oleh suhu desorpsi maksimum metana pada hasil Temperatur Program Desorpsi (TPD) 570 °C untuk Cu-Z dan 420 °C untuk CuPW, dan sebaliknya terhadap oksigen. Sedangkan Cu-Z mempunyai kekuatan asam lebih tinggi dari CuPW, yang ditunjukkan oleh suhu desorpsi maksimum piridin pada hasil TPD 680 °C untuk CuPW dan 780 ° C untuk Cu-Z. Konversi metana pada katalis CuPW dua kali (2K) Cu-Z pada W/F dan CH4/02 yang sama, meskipun luas permukaan keduanya berbeda. Fenomena ini disebabkan oleh pengaruh berperannya beberapa besaran (luas permukaan, kandungan inti aktif Cu+2 dan keasaman) secara simultan. Reaksi oksidasi tanpa umpan oksigen menunjukkan bahwa oksigen kisi kedua katalis berperan pada parsial oksidasi ini. Perbedaan kekuatan ikatan oksigen kisi pada kedua katalis memberikan selektivitas yang berbeda terhadap metanol/formaldehida. Cu-Z dengan kekuatan asam yang lebih tinggi dari CuPW mempunyai kapasitas adsorpsi terhadap metana lebih besar, sehingga konsentrasi metana yang besar di permukaan ini meningkatkan konversinya lebih besar dibanding terhadap CuPW. Pada katalis Cu-Z, selektivitas metanol yang terbesar (sekitar 7,5%) didapat pada 600 °C, CH4/02 = 17,3 dan W/F =-0,2 gr-kat.menit/ml. Selektivitas optimum formaldehid (sekitar 9%) pada W/F = 0,3 gr-kat.menit/ml, CH4/02 = 3, 600 °C. Sedangkan pada katalis" CuPW, metanol tidak terbentuk. Selektivitas formaldehida optimum adalah sekitar 18%, pada 500 °C, CH4/02 = 3 dan W/F = 0,3 grkat.menit/ml.
Depok: Fakultas Teknik Universitas Indonesia, 1996
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rafli
Abstrak :
Gas metana merupakan salah satu komponen terbesar dalam biogas yang dapat dikonversi menjadi metanol melalui reaksi oksidasi parsial. Reaksi oksidasi parsial bio-metana sebagai sumber metana dengan menggunakan katalis heterogen ZSM-5 sintesis termodifikasi oksida logam besi. Penambahan logam diharapkan dapat menghasilkan selektivitas yang lebih tinggi terhadap konversi metana menjadi metanol. Pada penelitian ini, katalis ZSM-5 alam maupun sintetik disintesis dengan metode double template menggunakan primary template TPAOH sebagai pengarah framework MFI, serta secondary template yaitu dimethyldiallyl ammonium chloride acrylamide copolymer (PDD-AM) sebagai pengarah struktur mesopori. Katalis Fe2O3/ZSM-5 alam dan sintetik yang telah disintesis, dianalisa menggunakan XRD, SEM, BET, dan FTIR. Karakterisasi dengan XRF juga dilakukan untuk mengetahui kadar %loading oksida logam besi pada katalis ZSM-5. Uji aplikasi masing-masing katalis terhadap adsorpsi menggunakan biogas sebagai sumber metana dilakukan dalam atmospheric fixed batch reactor dengan perbandingan feed CH4(biogas):N2 0,75:2. Reaksi dilakukan pada suhu 150oC dengan waktu 120 menit dengan variasi jumlah katalis dan melakukan reaksi menggunakan katalis regenerasi. Produk hasil reaksi dari masing-masing katalis dianalisa dengan GC-FID untuk mengetahui %yield metanol yang terbentuk.
Methane gas is one of abundant component in biogas that is common to be converted into methanol through partial oxidation reaction. Partial oxidation reaction of bio-methane uses methane as its source along with the utilization of modified iron oxide with natural and/or synthetic ZSM-5 as heterogeneous catalyst. Based on recent research showed that hierarchical ZSM-5 that was modified with iron oxide produced optimum % yield of methanol in bio-methane partial oxidation reaction (Triputrananda, 2018). Addition or loading of iron is expected to produce higher selectivity towards methane conversion into methanol. Aside of that, optimization was done with variation of pore size to determine the type of catalyst and its corresponds with optimum partial oxidation conversion output. In this research, natural and/or ZSM-5 catalyst were synthesized in double template method with TPAOH as its primary template that directed to MFI framework, PDDAM as its secondary template that directed mesoporous structure. Natural and/or synthetic Fe2O3/ZSM-5 catalyst were synthesized and further be analyzed with XRD, SEM, BET, and FTIR. Characterizations of XRF was done in order to obtain loading percentage of iron oxide into the ZSM-5 catalyst. The application were done in each variation of catalyst towards adsorption with biogas as methane source that was done in atmospheric fixed batch reactor with ratio of CH4(biogas):N2 0,75:2 feed. Reactions were done under temperature of 150oC with 120 minutes duration, alongside with amount of variation on catalyst and reaction with regenerated catalyst. Products obtained from each catalyst were analyzed with GC-FID to determine % of conversion from each products obtained.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Bahtiar
Abstrak :
Sintesis ZSM-5 mesopori dengan TPAOH sebagai template pertama dan PDDA sebagai template kedua telah berhasil dilakukan. Zeolit hasil sintesis dikarakterisasi menggunakan XRD, BET dan FTIR menunjukkan bahwa zeolit yang disintesis merupakan zeolite ZSM-5 mesopori yang memiliki rata-rats radius pori berukuran 47,12 Å dengan luas area sebesar 435.10 m2g-1. Perlakuan lanjut dengan logam Co dengan metode impregnasi (Co-ZSM5-IMP) dan tukar kation (Co-ZSM5-TI) masing-masing dengan larutan Co(NO3)2.6.H2O 0.2945 M dan 0.1 M, dan dihasilkan katalis dengan kadar Co masing-masing 2.28 wt% dan 2.12 wt%. Reaksi katalisis berlangsung di dalam reaktor gas bersistem batch pada suhu 1500C dengan variasi laju umpan gas metana sebesar 0.5; 0.75; dan 1 bar dengan waktu reaksi selama 30 menit. Hasil reaksi katalisis selanjutnya di uji dengan instrumentasi GC-FID dengan metode pengukuran standar adisi. Hasil yang optimum didapatkan pada variasi laju umpan gas metana sebesar 0.75 bar dengan persen konversi metana menjadi metanol sebesar 9,03 % dengan katalis Co-ZSM-5-IMP dan 15.24 % dengan katalis Co-ZSM-5-TI. Selanjutnya pada kondisi yang optimum dilakukan penambahan waktu menjadi 60 menit dan didapatkan persen konversi metana menjadi methanol sebesar 42.56 % dengan katalis Co-ZSM-5-IMP dan 6,74 % dengan katalis Co-ZSM-5-TI. Hasil instrumentasi FE-SEM menunjukkan bahwa katalis hasil reaksi masih memiliki struktur ZSM-5 yang baik dengan kadar Co dalam zeolit mencapai 1.4-2 wt%. Hal ini menunjukkan katalis yang digunakan masih memungkinkan untuk digunakan kembali sebagai katalis. ...... ZSM-5 mesoporous was successfully synthesized with TPAOH as a first template and PDDA as a secondary template. XRD, BET, and FTIR were used to characterized the zeolite and showed that the zeolite was ZSM-5 mesoporous which has average pore radius 47,12 Å with the surface area was 435.10 m2g-1. Catalyst product from treatment using impregnation (Co-ZSM5-IMP) and ion exchange(Co-ZSM5-TI) method with Co(NO3)2.6.H2O 0.2945 M and 0.1 M solution has amount of Co 2,28 wt% and 2.12 wt%. Catalytic reaction was performed in a batch reactor at 1500C with various feed rate of methane gas, 0.5; 0.75; and 1 bar, for 30 minutes. The catalyst product was measured using GC-FID with addition standard method. Optimum product was obtained at 0.75 bar feed rate of methane gas with convertion percentage 9,03% for Co-ZSM-5-IMP catalyst and 15,24% for Co-ZSM-5-TI catalyst. In optimum condition, catalytic reaction was added to 60 minutes and convertion percentage from methane to methanol were 42.56% for Co-ZSM-5-IMP and 6,74% for Co-ZSM-5-TI. FE- SEM measurement showed that the catalyst after reaction still have a good ZSM-5 structure with amount of Co up to 1,4-2%. It indicates that the catalyst has a possibility to reused again.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S46483
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Reza
Abstrak :
Gas oksigen digunakan dalam reaksi oksidasi parsial metana dengan menggunakan katalis Co/ZSM-5 Mesopori. ZSM-5 disintesis dengan menggunakan metode double template dimana TPAOH digunakan sebagai template pengarah struktur MFI dan PDDA digunakan sebagai template pengarah mesopori. Difraktogram hasil sintesis menunjukkan terbentuknya ZSM-5. Impregnasi logam Co tidak mempengaruhi secara signifikan pola difraksi pada difraktogram. Analisa AAS menunjukkan perbandingan Si/Al sebesar 25,03 dan % loading Co sebesar 2,47%. FTIR menunjukkan hilangnya gugus C-H pada ZSM-5 Mesopori setelah kalsinasi. Hal ini didukung oleh data TGA yang menunjukkan hilangnya 29,43% massa ZSM-5 Mesopori. Pencitraan SEM menunjukkan terbentuknya kristal heksagonal dengan permukaan yang tidak rata akibat penggunaan PDDA sebagai template pengarah mesopori. Analisa BET mengindikasikan masuknya logam Co maupun oksidanya ke dalam pori yang berukuran mikro. Hal ini dapat dilihat dari penurunan volum mikropori sebesar 41,11%. Sementara meningkatnya luas permukaan eksternal mengindikasikan terbentuknya cluster-cluster kobalt oksida pada permukaan eksternal ZSM-5. Reaksi katalitik oksidasi parsial metana dilakukan dalam batch reactor dengan komposisi gas metana 0,75 bar dan gas oksigen 2 bar. Dilakukan variasi waktu reaksi yaitu 30, 60, dan 120 menit. Selain itu juga dilakukan variasi ekstraktor produk. Terjadi peningkatan % konversi sebesar 145,49% setelah menggunakan gas oksigen pada reaksi oksidasi parsial metana. Analisa GC menunjukkan bahwa waktu reaksi optimum adalah 30 menit dengan % konversi sebesar 1,39% dengan ekstraktor air dan 41,95% dengan ekstraktor etanol. ......Oxygen is used in the partial oxidation of methane by using a catalyst Co - ZSM - 5 Mesoporous . ZSM - 5 synthesized using a double template method which is TPAOH used as a MFI structure directing template and PDDA was used as a mesoporous directing template. XRD results showed the formation of synthesis of ZSM - 5 . Co metal impregnation does not affect significantly the XRD diffraction pattern . AAS analysis shows the ratio Si / Al of 25.03 and % Co loading of 2.47 % . FTIR showed the loss of the C-H on Mesoporous ZSM - 5 after calcination. This is supported by the TGA data show lost 29,43% mass Mesoporous ZSM - 5. SEM imaging showed the formation of hexagonal crystals with uneven surfaces due to the use of PDDA as a mesoporous directing template. BET analysis indicates the inclusion of Co or its oxides into micro-sized pores . It can be seen from the decrease in micropore volume by 41.11 % . While an increase in external surface area indicated the formation of cobalt oxide clusters on the external surface of ZSM - 5 . Methane catalytic partial oxidation reactions carried out in a batch reactor with methane gas composition of 0.75 bar and 2 bar of oxygen gas. Reaction time variations are 30, 60, and 120 minutes. There were also do variations of products extractor. There was an increase of 145.49% %conversion after using oxygen gas in a partial oxidation reaction of methane. GC analysis showed that the optimum reaction time is 30 minutes with the % conversion of 1.39% with a water extractor ang 41,95% with ethanol extractor.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56349
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bangkit Gati Nurgita
Abstrak :
Metana hasil produksi gas alam dapat dikonversi menjadi metanol melalui reaksi oksidasi parsial. Produk tersebut berpotensi sebagai sumber bahan bakar alternatif. Pada penelitian ini reaksi oksidasi parsial metana menjadi metanol dikatalisis oleh katalis oksida logam Fe, Mn, Ni, dan Co tersupport ZSM-5 hirarki. Variasi logam dilakukan untuk mengetahui jenis katalis logam yang dapat menghasilkan konversi yang optimum. Sintesis ZSM-5 hirarki menggunakan metode double template, dengan Tetra Propyl Amonium Hidroksida TPAOH sebagai primary template pengarah framework MFI dan Poly Diallyl Dimethyl Ammonium Chloride PDD-AM sebagai secondary template sebagai pengarah mesopori. Analisis XRD mengindikasikan ZSM-5 dengan kristalinitas yang tinggi berhasil disintesis. Pencitraan SEM menghasilkan bentuk kristal khas dari ZSM-5 hirarki yaitu memiliki struktur heksagonal dengan permukaan yang kasar. Analisis menggunakan AAS menghasilkan loading logam pada ZSM-5 sebesar 2.1-2.8. Analisis BET membuktikan terbentuknya mesopori dengan terbentuknya hystheresis loop pada seluruh sampel katalis. Uji aplikasi dilakukan dalam batch reactor dengan perbandingan feed CH4:N2 sebanyak 0,75:2, reaksi tersebut dilakukan selama 120 menit pada suhu 150 C dengan dan tanpa gas oksigen. Analisa produk dengan GC-FID gas oksigen mampu meningkatkan aktifitas katalitik dari katalis hasil sintesis dengan yield tertinggi 49.4 menggunakan Fe2O3/ZSM-5.
Methane produced by natural gas can be converted to methanol through a partial oxidation reaction. The product is potential as an alternative fuel source. In this research, the oxidation reaction of methane partial to methanol is catalyzed by metal oxides catalyst Fe, Mn, Ni, and Co supported hierarchical ZSM 5. Metal variations are performed to determine the type of metal catalyst that can produce the optimum yield. The synthesis of hierarchical ZSM 5 using double template method, with Tetra Propyl Ammonium Hydroxide TPAOH as primary template of MFI framework and Poly Diallyl Dimethyl Ammonium Chloride PDD AM as secondary template as mesoporous steering. XRD analysis indicated that ZSM 5 with high crystallinity was successfully synthesized. SEM imaging produces a typical crystal form of hierarchical ZSM 5 that has a hexagonal structure with a rough surface. Analysis using AAS resulted metal loading percent on ZSM 5 of 2.1 2.8. BET analysis proves the formation of mesopores with the formation of hystheresis loop on all catalyst samples. The application test was performed in a batch reactor with a 0.75 2 feed ratio of CH4 N2, the reaction being carried out for 120 min at 150 C with and without oxygen gas. The product analysis with GC FID oxygen gas was able to increase the catalytic activity of the synthesis catalyst with the highest yield of 49.4 using Fe2O3 ZSM 5.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dheo Vany Alfian
Abstrak :

Gas metana merupakan salah satu dari gas rumah kaca yang memiliki dampak pada pemanasan global. Oleh karena itu, banyak penelitian dilakukan untuk merubah gas metana menjadi produk yang berguna dan lebih ramah lingkungan. Zeolit NaY disintesis menggunakan metode hidrotermal dan diimpregnasi dengan oksida logam Fe3O4 yang disintesis dengan metode co-precipitated dengan persen loading 2% dan 4%. Katalis yang diuji terdiri dari zeolit NaY, Fe3O4/NaY 2%, Fe3O4/NaY 4% dan Fe3O4 magnetit tanpa penyangga. Penelitian ini juga membandingkan pengaruh keberadaan penyangga zeolit NaY pada katalis Fe3O4 magnetite. Reaksi dilakukan dengan menggunakan tekanan metana sebesar 0,75 bar dan gas campuran N2 99,5% dan O2 0,5%. Produk pada tiap katalis kemudian diuji menggunakan instrumen GC-FID. Hasil analisis menunjukkan persen yield metanol tertinggi didapatkan dengan katalis Fe3O4/NaY 4% sebesar 12,04%. Selain itu, persen selektivitas metanol tertinggi terhadap produk didapatkan dengan katalis Fe3O4/NaY 2% dengan selektivitas metanol sebesar 100%. Produk yang terbentuk pada katalis zeolit NaY dan Fe3O4/NaY 4% terbentuk produk samping berupa formaldehid sehingga kurang selektif bila dibandingkan dengan katalis Fe3O4/NaY 2%. Sedangkan pada katalis Fe3O4 tanpa penyangga zeolit NaY tidak terbentuk produk berupa metanol maupun formaldehid.


Methane gas is one of the greenhouse gases that has an impact on global warming. Therefore, a lot of research has been done to convert methane gas into useful and more environmentally friendly products. Zeolite NaY was synthesized using the hydrothermal method and impregnated with Fe3O4 metal oxide synthesized by co-precipitated method with 2% and 4% loading percent. The catalyst tested consisted of zeolite NaY, Fe3O4/NaY 2%, Fe3O4/NaY 4% and Fe3O4 without support. This study also compared the influence of the presence of NaY zeolite support on a Fe3O4 catalyst. The reaction was carried out using methane pressure of 0.75 bar and gas mixture of 99,5% N2 and 0.5% O2. The product on each catalyst was then tested using the GC-FID instrument. The analysis showed that the highest methanol yield was obtained with a Fe3O4/NaY 4% catalyst of 12.04%. In addition, the highest percent selectivity of methanol was obtained with a Fe3O4/NaY 4% catalyst with 100% methanol selectivity. The products formed on the zeolitNaY and Fe3O4/NaY 4% catalysts form side products in the form of formaldehyde so that they are less selective when compared to the Fe3O4/NaY 2% catalyst. While the Fe3O4 without support zeolite NaY catalyst did not form a product in the form of methanol or formaldehyde.

 

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Danika Nurranalya Putri
Abstrak :
Metana adalah salah satu dari gas rumah kaca yang berkontribusi sekitar 19%. Metana memiliki potensi pemanasan global 28 kali lebih besar dibandingkan gas karbondioksida. Sehingga, diperlukan suatu metode untuk mengonversi metana menjadi bahan kimia lain yang bermanfaat. Salah satunya adalah dengan oksidasi parsial metana menjadi metanol. Pada penelitian ini, Co3O4/ZSM-5 disintesis melalui dua metode, yaitu Bottom Up dan Top Down, lalu diimpregnasi dengan oksida kobalt dengan variasi persen loading sebesar 2,5, 5, dan 10%. Co3O4/ZSM-5 Bottom Up dan Top Down dikarakterisasi dengan XRD, FTIR, BET, SEM, dan XRF. Katalis yang diperoleh digunakan untuk reaksi oksidasi parsial metana menggunakan batch reactor. Reaksi dilakukan dengan perbandingan feed CH4 : N2 sebesar 0,75 bar : 2 bar, dengan suhu 150oC dan waktu reaksi selama 60 menit. Hasil reaksi menunjukkan bahwa Co3O4/ZSM-5 Bottom Up dengan persen loading 5% menghasilkan persen yield metanol terbesar, yaitu 62,08%. Sedangkan Co3O4/ZSM-5 Top Down dengan persen loading 2,5% menghasilkan persen yield metanol sebesar 0,016%. Variasi waktu dilakukan terhadap Co3O4/ZSM-5 5% Bottom Up dan Co3O4/ZSM-5 2,5% Top Down. Hasil yang diperoleh berupa formaldehida atau tidak terbentuk produk sama sekali, sehingga diketahui bahwa waktu reaksi yang optimum adalah 60 menit, dengan persen loading logam optimum sebesar 5% untuk metode Bottom Up dan 2,5% untuk metode Top Down. ......Methane is one of the greenhouse gases that contributes about 19%. Methane has a global warming potential 28 times greater than carbon dioxide gas. Thus, a method is needed to convert methane into other useful chemicals. One of them is by partial oxidation of methane to methanol. In this study, Co3O4/ZSM-5 was synthesized through two methods, namely Bottom Up and Top Down, then impregnated with cobalt oxide with variations in percent loading of 2,5, 5, and 10%. Co3O4/ZSM-5 Bottom Up and Top Down characterized by XRD, FTIR, BET, SEM, and XRF. The catalyst obtained was used for the partial oxidation of methane using a batch reactor with ratio of feed CH4 : N2 of 0.75 bar: 2 bar, with a temperature of 150o and a reaction time of 60 minutes. The reaction results show that Co3O4/ZSM-5 Bottom Up with a loading 5% produces the largest percentage yield, which is 62.08%. Meanwhile, Co3O4/ZSM-5 Top Down with a loading 2.5% produces yield of 0.016%. Time variations were carried out on Co3O4/ZSM-5 5% Bottom Up and Co3O4/ZSM-5 2.5% Top Down. The results obtained are formaldehyde or no product is formed, so it is known that the optimum reaction time is 60 minutes, with the optimum metal loading percent of 5% for the Bottom Up method and 2.5% for the Top Down method.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hadi Septian Gotama
Abstrak :
Zeolit ZSM-5 mesopori disintesis menggunakan double template TPAOH dan polimer kationik PDDA. Katalis Co-ZSM-5 disiapkan dengan cara impregnasi ion cobalt (2.6 wt% zeolit) pada ZSM-5 mesopori, agar memperoleh katalis heterogen untuk oksidasi parsial gas metana menjadi metanol menggunakan oksigen sebagai sumber oksidannya. Analisis XRD zeolit, pencitraan SEM dan BET mengindikasikan bahwa penambahan waktu ageing meningkatkan kristalinitas ZSM-5, tetapi di sisi lain juga menurunkan luas permukaan, mesoporositas, dan ukuran kristal ZSM-5. Perlakuan alkali pada ZSM-5 double template menyebabkan penurunan baik mesoporositas dan kristalinitas ZSM-5. Sebelum digunakan untuk aplikasi, Co-ZSM-5 dikalsinasi pada suhu 550 0C selama 3 jam dalam aliran O2 (200 mL/min). Reaksi katalitik berlangsung pada suhu 150 oC selama 30 menit dalam sistem batch reactor yang terdiri dari metana, N2 (rasio CH4:N2 = 0.5:2) dan katalis Co-ZSM-5 (2.6 wt%). Produk diekstraksi dengan etanol dan dianalisis menggunakan GC-FID. Analisa GC-FID menunjukkan bahwa oksidasi parsial metana pada ZSM-5 dengan mesoporositas tinggi memiliki kecenderungan terhadap pembentukan metanol. Sedangkan, ZSM-5 dengan mesoporositas yang lebih rendah menghasilkan produk lain yang tidak teridentifikasi selain metanol. Hasil ini menunjukkan bahwa selektifitas produk oksidasi parsial metana dapat ditentukan dengan mengatur mesoporositas ZSM-5 sebagai katalis. Mesoporous ZSM-5 zeolite was synthesized using double template TPAOH and cationic polymer PDDA. Co-ZSM-5 catalyst was then prepared by impregnating cobalt ions (2.6 wt% zeolite) in mesoporous ZSM-5, in order to obtained heterogeneous catalyst for partial oxidation of methane gas to methanol using oxygen as oxidant. XRD pattern of the zeolite, SEM images, and adsorption of BET indicate that the addition of ageing time increase the crystallinity of ZSM- 5, but in the other hand decrease the surface area, mesoporosity, and particle size of ZSM-5. In addition, giving alkaline treatment to ZSM-5 double template decrease both mesoporosity and crystallinity of ZSM-5. Before reaction, Co- ZSM-5 were calcined at 550 0C for 3 hours in flow of O2 (200 mL/min). The catalytic test was performed at 150 oC for 30 minutes in a batch reactor consisting of methane, N2 (CH4:N2 ratio is 0.5:2) and Co-ZSM5 catalyst (2.6 wt%). The reaction products were collected by extraction with ethanol and analyzed using GC-FID. The analysis of GC-FID show that the partial oxidation of methane performed by high mesoporosity of ZSM-5 tends to methanol production. While the reaction performed by lower mesoporosity of ZSM-5 results another unidentified product beside methanol. These result show that the product selectivity of partial oxidation of methane could be determined by tuning the mesoporosity of ZSM-5 as catalyst.
Depok: Universitas Indonesia, 2012
S43395
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2   >>