Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Fachry Arrifqi
"Ester base oil merupakan pelumas alami yang telah diterima secara luas dikarenakan kemampuan pelumasannya yang tinggi, serta keunggulan seperti kinerja suhu rendah, indeks viskositas yang tinggi, pengurangan gesekan yang sangat baik, dan sifat anti aus. Proses sintesis ester base oil melibatkan dua tahapan utama, yaitu oligomerisasi dan esterifikasi. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses pre- treatment oligomerisasi pabrik ester base oil dengan multivariable model predictive control (MMPC) 4x4. Metode yang digunakan untuk mendapatkan model first order plus dead time (FOPDT) 4x4 adalah dengan cara dilakukan identifikasi sistem menggunakan metode Smith, metode Wade, dan metode Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root- mean-square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine- tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time). Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap pengujian set point (SP) tracking dan pengujian disturbance rejection. Kinerja MMPC juga akan dibandingkan dengan kinerja pengendali propotional-integral (PI) dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik menggunakan metode Smith yaitu M1V3, M2V1 ; metode Wade yaitu M1V2, M2V3, M2V4, M4V2 ; metode Solver yaitu M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4. Metode fine-tuning pada penyetelan MMPC menghasilkan parameter P, M, T terbaik masing-masing sebesar 350, 300, dan 2. Pada pengujian SP ttacking, MMPC menunjukkan kinerja terbaik dalam pengendalian suhu sedangkan kinerja pengendali PI lebih baik dalam pengendalian laju alir. Pada pengujian disturbance rejection, kinerja MMPC lebih baik dibandingkan pengendali PI dengan perbaikan kinerja pengendalian sebesar 7,16% - 61,35% untuk nilai IAE dan 13,96% - 88,60% untuk nilai ISE.
......Ester base oil is a natural lubricant widely accepted due to its high lubricating ability, as well as advantages such as low-temperature performance, high viscosity index, excellent friction reduction, and anti-wear properties. The synthesis process of ester base oil involves two main stages, namely oligomerization and esterification. This research aims to obtain a design and design process control in the pre-treatment process of oligomerization in the ester base oil plant with multivariable model predictive control (MMPC) 4x4. The method used to obtain the first-order plus dead time (FOPDT) 4x4 model is by identifying the system using Smith's method, Wade's method, and Solver's method. Furthermore, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) values from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine-tuning to obtain the parameter values P (prediction horizon), M (control horizon), and T (sampling time). These MMPC parameters will be tested based on controller performance responses to set point (SP) tracking testing and disturbance rejection testing. The performance of MMPC will also be compared with proportional-integral (PI) controllers using integral absolute error (IAE) and integral square error (ISE) calculations. The results of the system identification obtained the best FOPDT model using Smith's method, namely M1V3, M2V1; Wade's method, namely M1V2, M2V3, M2V4, M4V2; Solver's method, namely M1V1, M1V4, M2V2, M3V1, M3V2, M3V3, M3V4, M4V1, M4V3, M4V4 .The fine-tuning method in MMPC tuning resulted in the best P, M, T parameters of 350, 300, and 2 respectively. In SP tracking testing, MMPC showed the best performance in temperature control while PI controller performance was better in flow rate control. In disturbance rejection testing, MMPC performance was better than PI controllers with performance improvement ranging from 7.16% to 61.35% for IAE values and 13.96% to 88.60% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Arif Alwafi
"Pelumas dapat didefinisikan sebagai substansi yang ditempatkan di antara dua permukaan yang bergerak relatif untuk mengurangi gesekan di antara keduanya. Pelumas dapat mengurangi gesekan, tingkat keausan, dan konsumsi energi. Oleh karena itu, pelumas secara luas diterapkan di hampir semua bidang industri, terutama pada bidang transportasi, manufakur, hingga pembangkit listrik. Proses oligomerisasi dalam pembuatan ester minyak dasar dilakukan dengan menggabungkan senyawa asam karboksilat dengan poliol. Melalui reaksi oligomerisasi ini, jumlah cabang samping akan meningkat seiring pertumbuhan panjang rantai utama, yang pada gilirannya dapat meningkatkan viskositas ester minyak dasar. Penelitian ini bertujuan untuk mendapatkan rancangan serta mendesain pengendalian proses pada proses oligomerisasi pabrik ester base oil dengan multivariable model predictive control MMPC 100 (2×2) dan MMPC 101 (2×2) dengan identifikasi proses model first order plus dead time (FOPDT) dengan metode Smith, Wade, dan Solver. Selanjutnya, ditentukan model FOPDT terbaik dengan membandingkan nilai root-mean- square error (RMSE) terkecil dari setiap metode. Metode tuning yang digunakan untuk MMPC adalah metode Shridhar-Cooper dilanjutkan dengan fine tuning untuk mendapatkan nilai parameter P (prediction horizon), M (control horizon), dan T (sampling time) terbaik. Parameter MMPC tersebut akan diuji berdasarkan respon kinerja pengendali terhadap perubahan set point (SP) dan pengujian disturbance rejection dengan perhitungan integral absolute error (IAE) dan integral square error (ISE). Hasil identifikasi sistem didapatkan model FOPDT terbaik seluruhnya menggunakan metode Solver. Metode fine tuning pada penyetelan MMPC menghasilkan parameter T, P, M untuk MMPC 100 (2×2) sebesar 9, 120, dan 20 dan untuk MMPC 101 (2×2) sebesar 1, 230, dan 150. Pada pengujian Set Point (SP) tracking, MMPC merupakan pengendali terbaik untuk seluruh pengendalian dibandingkan pengendali PI. Pada pengujian disturbance rejection terhadap perubahan suhu inlet, pengujian dilakukan dengan membandingkan tiga kondisi, yaitu dengan adanya pengendalian pre treatment (Full Control), tanpa adanya pengendalian pre treatment (Local Control) dan PI. Didapatkan kinerja MMPC Full Control lebih baik dibandingkan kinerja MMPC Local Control dengan pemulihan kinerja pengendali sebesar 7,36%, 0,007%, 0,086%, dan 0,03% untuk nilai IAE dan 0,61%, 0,00%, 0,00%, dan 0,00% untuk nilai ISE.
......A lubricant can be defined as a substance placed between two relatively moving surfaces to reduce the friction between them. Lubricants can reduce friction, wear rate, and energy consumption. Therefore, lubricants are widely applied in almost all industrial fields, especially in transportation, manufacturing, and power generation. The oligomerization process in the preparation of base oil esters is carried out by combining carboxylic acid compounds with polyols. Through this oligomerization reaction, the number of side branches will increase as the main chain length grows, which in turn can increase the viscosity of the base oil ester. This study aims to obtain the design and design of process control in the oligomerization process of base oil ester plant with multivariable model predictive control MMPC 100 (2×2) and MMPC 101 (2×2) with first order plus dead time (FOPDT) model process identification by Smith, Wade, and Solver methods. Next, the best FOPDT model is determined by comparing the smallest root-mean-square error (RMSE) value from each method. The tuning method used for MMPC is the Shridhar-Cooper method followed by fine tuning to get the best parameter values of P (prediction horizon), M (control horizon), and T (sampling time). MMPC parameters will be tested based on the controller performance response to set point (SP) changes and disturbance rejection testing with integral absolute error (IAE) and integral square error (ISE) calculations. The results of system identification obtained the best FOPDT model entirely using the Solver method. The fine-tuning method on MMPC tuning produces parameters T, P, M for MMPC 100 (2×2) of 9, 120, and 20 and for MMPC 101 (2×2) of 1, 230, and 150. In the Set Point (SP) tracking test, MMPC is the best controller for all controls compared to PI controllers. In testing disturbance rejection to changes in inlet temperature, testing is done by comparing two conditions, namely with the presence of pre-treatment control (Full Control) and without pre-treatment control (Local Control). MMPC Full Control performance is better than MMPC Local Control performance with controller performance recovery of 7.36%, 0.007%, 0.086%, and 0.03% for IAE values and 0.61%, 0.00%, 0.00%, and 0.00% for ISE values."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library