Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Akhiyar Waladi
Abstrak :
Dalam negara yang demokratis, Pemilihan Umum (Pemilu) adalah prosedur untuk memilih kepala daerah yang diatur dalam Pasal 1 ayat 3 UUD 1945. KPU (Komisi Pemilihan Umum) adalah lembaga negara yang menyelenggarakan dengan memprioritaskan transparansi dan akuntabilitas dalam setiap tahap pemilihan umum di Indonesia. Salah satu bentuk keterbukaan yang selalu menjadi sorotan media adalah proses penghitungan suara. Proses perhitungan manual yang dilakukan oleh Komisi Pemilihan Umum (KPU) pada formulir C1 memakan waktu dan banyak akal karena melibatkan sukarelawan berbayar. Dalam penelitian ini, penulis menggunakan metode yang diusulkan untuk membangun sistem pengenalan tulisan tangan numerik pada formulir C1 KPU. Metode yang diusulkan adalah aliran pengenalan termasuk deteksi tabel dengan teknik kontur kandidat, pencocokan fitur, segmentasi angka, dan klasifikasi digit dengan jaringan saraf convolutional (CNN). Kumpulan data yang digunakan berasal dari situs web resmi KPU pada 2014 dan 2019. Kami menggunakan capsnet untuk mengklasifikasikan setiap digit tersegmentasi dengan akurasi 95,65\%. Model yang dilatih diuji menggunakan formulir validasi dan mencapai 80,73\% akurasi dokumen menggunakan formulir pemilihan 2019. ......In a democratic state, General Election (Pemilu) is a procedure for selecting regional heads regulated in Article 1 paragraph 3 of the 1945 Constitution. KPU (Komisi Pemilihan Umum) is a state institution that organizes by prioritize transparency and accountability in each stage of general elections in Indonesia. One form of openness that has always been in the media spotlight is the vote counting process. The manual calculation process carried out by the General Election Commissions (KPU) on form C1 is time-consuming and resourceful because it involves paid volunteers. In this study, the authors used the proposed method to build a numerical handwriting recognition system on the C1 KPU form. Method proposed is a recognition flow including table detection with candidate contour techniques, feature matching, number segmentation, and digit classification with the convolutional neural network (CNN). The datasets used are from the official KPU election websites in 2014 and 2019. We use capsnet to classify each segmented digit with 95.65\% accuracy. The trained model was tested using validation form and reach 80.73\% document accuracy using 2019 election form.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Parluhutan, Matthew Tumbur
Abstrak :
Pandemi COVID-19 mengubah pola kehidupan manusia, termasuk sistem perkuliahan yang berubah ke metode daring. Video perkuliahan dengan salindia menjadi salah satu pilihan sarana penyampaian materi kuliah secara daring. Penelitian ini bermaksud menguji keabsahan rancangan sistem yang mampu melakukan segmentasi temporal sesuai topik secara otomatis pada video perkuliahan. Sistem yang diajukan dibagi menjadi tiga sub-sistem yang memanfaatkan teknologi keyframe extraction, optical character recognition (OCR), dan topic modelling. Pertama, video perkuliahan akan diubah menjadi kumpulan keyframe dengan memanfaatkan metode Slide Detector yang dimodifikasi. Selanjutnya, akan dilakukan ekstraksi teks dari frame-frame tersebut menggunakan Tesseract OCR dengan preprocessing tambahan. Akhirnya, BERTopic dengan beragam algoritma clustering dan LDA diuji kemampuannya dalam topic modelling yang berguna untuk mengambil topik yang koheren dari teks tersebut. Penelitian pada tahap keyframe extraction menunjukkan bahwa terdapat peningkatan recall sebesar 0,235-025 dari 0 dan precision sebesar 0,619-0,75 dari 0 pada beberapa video pada Slide Detector termodifikasi. Sebaliknya, penelitian pada tahap OCR menunjukkan bahwa tambahan preprocessing belum bisa membantu meningkatkan performa Tesseract OCR. Pada tahap terakhir, ditemukan bahwa BERTopic lebih unggul daripada LDA dalam menarik topik yang koheren untuk use case penelitian ini. Agglomerative dan KMeans clustering ditemukan lebih optimal untuk kasus video perkuliahan jika dibandingkan dengan metode density-based. Augmentasi data dengan takaran yang sesuai diperlukan untuk mendapatkan hasil sedemikian rupa pada tahap ini. Secara umum, sistem dengan tiga bagian yang diusulkan pada penelitian ini sudah mampu melakukan segmentasi video perkuliahan sesuai tujuan, namun, video perkuliahan bersalindia merupakan dataset yang sangat heterogen dan merancang sebuah sistem yang mampu memanfaatkan dataset tersebut adalah tantangan tersendiri. ......The COVID-19 pandemic changed the lifestyle of many people, including university lectures that moved to online delivery. Lecture videos with slides became an option to deliver lecture materials online. This work attempts to show a proof of concept for a system design that is able to automatically segment a lecture video temporally based on the topic. The proposed system is divided into three subsystems that make use of keyframe extraction, optical character recognition (OCR), and topic modelling techniques. First, a lecture video will be converted to a collection of keyframes using a modified Slide Detector technique. Next, those frames will be processed using Tesseract OCR with some additional preprocessing steps to extract text. Lastly, BERTopic with various clustering techniques and LDA will be used for topic modelling to obtain a coherent topic from the text extracted earlier. The research in the keyframe extraction step shows that there is an increase of 0.235-0,5 points from 0 for recall and 0,619-0,75 points from 0 for precision for certain videos using the modified Slide Detector. On the other hand, the research in the OCR step shows that the additional preprocessing is not yet able to help increase the performance of Tesseract OCR. At the last step, BERTopic proves to be better than LDA to obtain the coherent topic for this system's use case. Agglomerative and KMeans clustering is better for lecture videos compared to density-based methods. Appropriate amounts of data augmentation is needed to obtain the best results at this step. Overall, the three-part system in this research is able to segment lecture videos as intended, however, lecture videos with slides is a dataset that is very heterogeneous and designing a system to handle all types of videos is a large challenge.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Irfan Junaidi
Abstrak :
Pandemi COVID-19 mengubah pola kehidupan manusia, termasuk sistem perkuliahan yang berubah ke metode daring. Video perkuliahan dengan salindia menjadi salah satu pilihan sarana penyampaian materi kuliah secara daring. Penelitian ini bermaksud menguji keabsahan rancangan sistem yang mampu melakukan segmentasi temporal sesuai topik secara otomatis pada video perkuliahan. Sistem yang diajukan dibagi menjadi tiga sub-sistem yang memanfaatkan teknologi keyframe extraction, optical character recognition (OCR), dan topic modelling. Pertama, video perkuliahan akan diubah menjadi kumpulan keyframe dengan memanfaatkan metode Slide Detector yang dimodifikasi. Selanjutnya, akan dilakukan ekstraksi teks dari frame-frame tersebut menggunakan Tesseract OCR dengan preprocessing tambahan. Akhirnya, BERTopic dengan beragam algoritma clustering dan LDA diuji kemampuannya dalam topic modelling yang berguna untuk mengambil topik yang koheren dari teks tersebut. Penelitian pada tahap keyframe extraction menunjukkan bahwa terdapat peningkatan recall sebesar 0,235-025 dari 0 dan precision sebesar 0,619-0,75 dari 0 pada beberapa video pada Slide Detector termodifikasi. Sebaliknya, penelitian pada tahap OCR menunjukkan bahwa tambahan preprocessing belum bisa membantu meningkatkan performa Tesseract OCR. Pada tahap terakhir, ditemukan bahwa BERTopic lebih unggul daripada LDA dalam menarik topik yang koheren untuk use case penelitian ini. Agglomerative dan KMeans clustering ditemukan lebih optimal untuk kasus video perkuliahan jika dibandingkan dengan metode density-based. Augmentasi data dengan takaran yang sesuai diperlukan untuk mendapatkan hasil sedemikian rupa pada tahap ini. Secara umum, sistem dengan tiga bagian yang diusulkan pada penelitian ini sudah mampu melakukan segmentasi video perkuliahan sesuai tujuan, namun, video perkuliahan bersalindia merupakan dataset yang sangat heterogen dan merancang sebuah sistem yang mampu memanfaatkan dataset tersebut adalah tantangan tersendiri. ......The COVID-19 pandemic changed the lifestyle of many people, including university lectures that moved to online delivery. Lecture videos with slides became an option to deliver lecture materials online. This work attempts to show a proof of concept for a system design that is able to automatically segment a lecture video temporally based on the topic. The proposed system is divided into three subsystems that make use of keyframe extraction, optical character recognition (OCR), and topic modelling techniques. First, a lecture video will be converted to a collection of keyframes using a modified Slide Detector technique. Next, those frames will be processed using Tesseract OCR with some additional preprocessing steps to extract text. Lastly, BERTopic with various clustering techniques and LDA will be used for topic modelling to obtain a coherent topic from the text extracted earlier. The research in the keyframe extraction step shows that there is an increase of 0.235-0,5 points from 0 for recall and 0,619-0,75 points from 0 for precision for certain videos using the modified Slide Detector. On the other hand, the research in the OCR step shows that the additional preprocessing is not yet able to help increase the performance of Tesseract OCR. At the last step, BERTopic proves to be better than LDA to obtain the coherent topic for this system's use case. Agglomerative and KMeans clustering is better for lecture videos compared to density-based methods. Appropriate amounts of data augmentation is needed to obtain the best results at this step. Overall, the three-part system in this research is able to segment lecture videos as intended, however, lecture videos with slides is a dataset that is very heterogeneous and designing a system to handle all types of videos is a large challenge.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Volker Margner, editor
Abstrak :
Topics and features presents a detailed overview of Arabic character recognition technology, covering a range of different aspects of pre-processing and feature extraction, reviews a broad selection of varying approaches, including HMM-based methods and a recognition system based on multidimensional recurrent neural networks, examines the evaluation of Arabic script recognition systems, discussing data collection and annotation, benchmarking strategies, and handwriting recognition competitions, describes numerous applications of Arabic script recognition technology, from historical Arabic manuscripts to online Arabic recognition.
London: Springer, 2012
e20407620
eBooks  Universitas Indonesia Library
cover
Naufal Ihsan Pratama
Abstrak :
Seiring berkembangnya teknologi informasi yang mulai merambah ke sektor ekonomi menyebabkan banyak bermunculan penyedia layanan dompet digital di Indonesia. DOKU sebagai salah satu penyedia layanan dompet digital ingin terus berinovasi untuk meningkatkan kepuasan pelanggan. Proses verifikasi data diri yang membutuhkan waktu lama karena harus dilakukan secara manual kini menjadi persoalan. Fokus penelitian ini adalah untuk mengembangkan sebuah aplikasi mobile cross platform yang dapat digunakan untuk mengekstrak data dari gambar kartu idenitas pengguna DOKU agar proses verifikasi data dapat dilakukan secara otomatis. Arsitektur dari aplikasi terdiri dari aplikasi mobile menggunakan Flutter dan webservice menggunakan Flask. Proses ekstraksi data dari gambar kartu identitas dilakukan menggunakan Tesseract-OCR. Hasil ekstraksi data akan diprediksi menggunakan model LSTM untuk dapat dilakukan verifikasi lanjutan. Hasil eksperimen menunjukkan akurasi pengenalan karakter dari gambar kartu identitas sebesar 77.45% dan akurasi prediksi kategori sebesar 88%. Dengan demikian aplikasi ini dapat digunakan untuk menyelesaikan masalah verifikasi data pengguna. ......The development of information technology has penetrated the economic sector causing many digital wallet service providers to appear in Indonesia. DOKU as one of the digital wallet service providers wants to innovate to increase customer satisfaction. The process of verifying personal data which takes a long time because it has to be done manually is now a problem. The focus of this research is to develop cross-platform mobile applications that can be used to extract data from DOKU user identity card images so that the data verification process can be done automatically. The application architecture consists of mobile applications using Flutter and web services using Flask. The data extraction process from the identity card image is done using Tesseract-OCR. The results of data extraction will be predicted using the LSTM model for the further verification process. The experimental results show that the accuracy of character recognition from the identity card images is 77.45% and the category prediction accuracy is 88%. Thus this application can be used to resolve user data verification issues.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Peter Pangestu
Abstrak :
A 2014 report from Digital Marketing Philippines stated that the number of web applications with visual content as their main product has increased significantly. Image processing technology has also undergone significant growth. One example of this is optical character recognition (OCR), which can convert the text on an image to plain text. However, a problem occurs when the image has low contrast and low exposure, which potentially results in information being hidden in the image. To address this problem, histogram equalization is used to enhance the image’s contrast so the hidden information can be shown. Similar to X-ray scanning used in the medical field, histogram equalization processes scanned images that have low brightness and low contrast. In this study, histogram equalization was successfully implemented using OCR preprocessing. The test was done with a dataset that contains dark background images with low light text; the successful outcome resulted in the ability to show 74.95% of the information hidden in the image.
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:5 (2017)
Artikel Jurnal  Universitas Indonesia Library