Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Risfania Nurdinda Sari
"COVID-19 adalah penyakit yang disebabkan oleh virus SARS-CoV-2 dan menyerang sistem pernapasan manusia. Selain menganggu kesehatan fisik, pandemi COVID-19 juga memberikan dampak psikologis, salah satunya adalah tingkat stres yang meningkat pada masyarakat. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berasosiasi dengan tingkat stres pada pandemi COVID-19. Dalam mencapai tujuan tersebut, penelitian ini menggunakan metode classification tree dan regresi logistik multinomial. Sebelum melakukan proses identifikasi faktor menggunakan classification tree, dilakukan penanganan masalah imbalance data menggunakan metode SMOTE. Selanjutnya, dilakukan kuantifikasi risiko faktor-faktor yang teridentifikasi pada classification tree menggunakan analisis regresi logistik multinomial. Kinerja model diukur menggunakan nilai precision, recall, F1-Score, dan AUC. Hasil yang diperoleh adalah model classification tree dengan penanganan imbalance data menggunakan SMOTE dapat meningkatkan kinerja model dengan nilai precision 0,5980, nilai recall 0,8653, nilai F1-Score 0,7072, dan AUC 0,702. Dengan model tersebut, didapatkan faktor-faktor yang teridentifikasi berasosiasi dengan tingkat stres pada pandemi COVID-19 adalah Total_OECDInsititutions, Total_CoronaConcerns, dan Age. Peningkatan nilai Corona Concerns cenderung memberikan risiko peningkatan tingkat stres, sedangkan peningkatan nilai OECDInsititutions dan Age cenderung memberikan risiko penurunan tingkat stres.
......COVID-19 is a disease caused by the SARS-CoV-2 virus that attacks the human respiratory system. In addition to disrupting physical health, the COVID-19 pandemic also has psychological impacts, one of which is an increased level of stress. This study aims to identify factors associated with the level of stress during the COVID-19 pandemic. The study employs the classification tree method and multinomial logistic regression. Prior to the factor identification process using the classification tree, the issue of imbalanced data is addressed using the SMOTE method. Subsequently, the quantification of risk factors identified in the classification tree is conducted using multinomial logistic regression analysis. The model's performance is measured using precision, recall, F1-score, and AUC values. The results obtained indicate that the classification tree model with the handling of imbalanced data using SMOTE can improve model performance, with a precision value of 0,5980, recall value of 0,8653, F1-score value of 0,7072, and AUC value of 0,702. With this model, the identified factors associated with the level of stress during the COVID-19 pandemic are Total_OECDInstitutions, Total_CoronaConcerns, and Age. An increase in Corona Concerns tends to pose a risk of increased stress levels, while an increase in OECD Institutions and Age tends to pose a risk of decreased stress levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Keumala Hayati
Program Pascasarjana Universitas Indonesia, 2009
T27128
UI - Tesis Open  Universitas Indonesia Library
cover
Kesia Gabriele
"Support Vector Machine (SVM) merupakan model klasifikasi yang dikenal dengan keakuratan klasifikasi yang tinggi. Namun, Support Vector Machine (SVM) menghasilkan hasil klasifikasi yang kurang optimal jika data yang digunakan tidak seimbang (imbalanced data). Terdapat beberapa cara dalam menangani data yang tidak seimbang, salah satunya dengan metode resampling. Metode resampling sendiri terbagi dalam dua pendekatan yaitu over-sampling dan under-sampling. Salah satu pendekatan over-sampling yang popular adalah Synthetic Minority Over-sampling Technique (SMOTE). SMOTE bekerja dengan membangkitkan sampel sintetis pada kelas minoritas. Untuk meningkatkan kinerja model, SMOTE dapat digabungkan dengan pendekatan under-sampling seperti Edited Nearest Neighbors (ENN) dan Cluster-based Undersampling Technique (CUT). Dalam kombinasinya dengan SMOTE, ENN berperan sebagai cleaning untuk menghapus data sintetis dari penerapan SMOTE yang tidak relevan dan dianggap sebagai noise. Sementara, CUT beperan dalam mengidentifikasi sub-kelas dari kelas mayoritas untuk menekan angka over-sampling sekaligus meminimalisir hilangnya informasi penting pada kelas mayoritas selama proses undersampling. Kombinasi over-sampling dan under-sampling ini saling melengkapi dan mengatasi kekurangan dari masing-masing metode. Penelitian ini memfokuskan perbandingan performa metode resampling SMOTE beserta variasinya, yaitu SMOTEENN dan SMOTE-CUT dalam mengklasifikasikan data multi-kelas yang tidak seimbang menggunakan Support Vector Machine. Dari analisis yang dilakukan, diperoleh kesimpulan bahwa SMOTE-CUT cenderung menghasilkan performa klasifikasi yang lebih baik dibandingkan dengan SMOTE ataupun SMOTE-ENN. Walaupun demikian, keseluruhan metode resampling (SMOTE, SMOTE-ENN, dan SMOTE-CUT) mampu meningkatkan kinerja dari model klasifikasi Support Vector Machine (SVM).
......Support Vector Machine (SVM) is popular classfier that is known for its high accuracy value. However, Support Vector Machine (SVM) may not perform well on imbalanced datasets. There are several ways to handle imbalanced data, one of them is through resampling methods. Resampling methods itself divided into two approaches, oversampling and under-sampling. One of the popular over-sampling methods is Synthetic Minority Over-sampling Technique (SMOTE). SMOTE works by generating synthetic samples for the minority class. SMOTE can be combined with under-sampling methods such as Edited Nearest Neighbors (ENN) or Cluster-based Under-sampling Technique (CUT). In combination with SMOTE, ENN acts as a cleaning role to remove synthetic data generated from SMOTE application that is not relevant and considered as noise. Meanwhile, CUT plays a role in identifying sub-class form the majority class to reduce over-sampling while minimizing the loss of important information in the majority class during the under-sampling process. The combination of over-sampling and undersampling is needed to complement and overcome the weakness of each method. This research mainly focuses on comparing the performance of the resampling method SMOTE and its variations, SMOTE-ENN and SMOTE-CUT, in classifying multi-class imbalanced data using Support Vector Machine. From the analysis conducted, it was concluded that data with resampling SMOTE-CUT shows better classification performance compare to data with resampling SMOTE or SMOTE-ENN. However, any resampling method (SMOTE, SMOTE-ENN, and SMOTE-CUT) can handle imbalanced data and improve Support Vector Machine performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library