Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Esti Latifah
Abstrak :
ABSTRAK
Klasifikasi merupakan proses pengelompokan suatu himpunan data ke kelas-kelas yang sudah ada sebelumnya. Pada umumnya, himpunan data dibagi menjadi dua bagian, yaitu training data dan testing data. Dibutuhkan suatu metode klasifikasi yang dapat mengelompokkan training data dan testing data ke dalam suatu kelas dengan tepat. Sering kali metode klasifikasi hanya dapat mengelompokkan training data dengan tepat saja, namun tidak demikian untuk testing data. Artinya, model yang terbentuk tidak cukup stabil atau model tersebut mengalami overfitting. Secara umum, overfitting merupakan kondisi saat akurasi yang dihasilkan pada training data cukup tinggi, namun cenderung tidak mampu memprediksi testing data. Penentuan metode klasifikasi yang rentan terhadap overfitting perlu dipertimbangkan. Random forest merupakan salah satu metode klasifikasi yang rentan terhadap masalah overfitting. Hal tersebut sekaligus menjadi salah satu kelebihan dari metode random forest. Oleh karena itu, pada tugas akhir ini akan dibahas metode random forest serta mengaplikasikannya pada data penderita penyakit Parkinson yang dibagi berdasarkan 2 sub-tipe, yaitu tremor dominant TD dan postural instability gait difficulty PIGD dominant. Selanjutnya, dari data tersebut diperoleh hasil akurasi model yang dihasilkan dalam mengklasifikasi training data, yaitu sekitar 94,25 . Sementara itu, akurasi metode ini dalam melakukan klasifikasi pada data yang tidak terkandung dalam membentuk model sebesar 94,26.
ABSTRACT
Classification is the process of grouping a set of data into pre existing classes. In general, the data set is divided into two parts. There are training data and testing data. It takes a classification method that can classify both training data and testing data of its class appropriately. However, some of the classification methods only fit in training data, but it can not apply in testing data. It means that the model is unstable or the model occurs overfitting. In general, overfitting is a condition when the model too fit in training, but unable to predict testing data. In other words, the accuracy of predicting the testing data is decreasing. Therefore, the determination of classification methods that are vulnerable to overfitting need to be considered. Random forest is one of the classification methods that is vulnerable to overfitting. It is also one of the advantages of the random forest method. Therefore, in this final project will be discussed random forest method and applying it to the data of Parkinson 39 s disease patients that is divided by 2 sub types. There are dominant tremor TD and postural instability gait difficulty PIGD dominant. Furthermore, from the data obtained the results of model accuracy in classifying the training data is about 94.25 . Meanwhile, the accuracy of this method in classifying the data not contained in forming a model is about 94.26.
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Abdurrahman Pabe
Abstrak :
Backpropagation neural network backpropagation adalah salah satu algoritma machine learning yang dapat digunakan untuk melakukan klasifikasi data. Klasifikasi data dilakukan dalan serangkaian proses training dan testing. Pada akhir proses testing yang juga merupakan akhir dari proses backpropagation, akan didapatkan nilai recognition rate. Nilai recognition rate merupakan nilai yang menandakan banyaknya data yang berhasil diklasifikasi dengan benar pada proses testing terhadap seluruh testing dataset. Recognition rate erat kaitannya dengan masalah underfitting, overfitting, local minima, dan local maxima. Keempat masalah ini menyebabkan nilai recognition rate yang didapatkan kurang optimal. Namun biasanya untuk menangani keempat masalah ini dilakukan pengaturan pada beberapa paramter, misalnya learning rate, momentum, jumlah layer, jumlah nodes, weights, dan lain-lain. Pada tulisan ini akan dijelaskan program optimasi yang melakukan pengaturan pada nilai inisialisasi weights untuk menangani keempat tersebut. Program ini melakukan inisialisasi weights menggunakan genetic algorithm pada backpropagation yang mengimplementasikan k-fold crossvalidation. Untuk menguji dan membandingkan program optimasi terhadap program implementasi backpropagation yang tidak dioptimasi program non-optimasi, digunakan empat dataset, yaitu iris flower dataset, seeds dataset, wine dataset, dan EEG dataset buatan. Pada akhir pengujian didapatkan hasil bahwa program optimasi berhasil mendapatkan nilai recognition rate lebih tinggi pada iris flower dataset, yaitu 97.33 pada program optimasi dan 96.67 pada program non-optimasi. Kemudian didapatkan pula nilai recognition rate yang lebih tinggi pada seeds dataset, yaitu 93.33 pada program optimasi dan 92.86 pada program non-optimasi. Lalu didapatkan pula nilai recognition rate yang lebih tinggi pada EEG dataset buatan, yaitu 37.5 pada program optimasi dan 35.94 pada program non-optimasi. Sedangkan pada wine dataset didapatkan nilai recognition rate yang sama antara program optimasi dan program non-optimasi, yaitu 99.44.
Backpropagation neural network backpropagation is one of machine learning algorithms that can be used to classify data. The data classification is done in a series of trainig and testing processes. At the end of testing process that is also the end of backpropagation process, the algorithm will produce recognition rate value. Recognition rate value indicates the total of correctly classified data in testing process againts all data in testing dataset. Recognition rate value related to underfitting, overfitting, local minima, and local maxima problems. However, to handle these problems adjusting some parameters are necessary to be done. These parameters are learning rate, momentum, number of layers, number of nodes, weights, etc. In this writting will be explained an optimization program that adjusts the initialization values of weights to handle those four problems. This program initializes weights using genetic algorithm on backpropagation implementing k fold crossvalidation. To test and compare the optimization program with a program that implements backpropagation without optimization non optimzation program four datasets will be used, those are iris flower dataset, seeds dataset, wine dataset, and artificial EEG dataset. At the end of the test, the results show that optimization program obtained higher recognition rate value on iris flower dataset, that is 97.33 on optimization program againts 96.67 on non optimization program. Other than that, optimization program obtained higher recognition rate value on seeds dataset, that is 93.33 on optimization program againts 92.86 on non optimization program. Also, optimization program obtained higher recognition rate value on artificial EEG dataset, that is 37.5 on optimization program againts 35.94 on non optimization program. However, the optimization program obtained an equal recognition rate value on wine dataset, that is 99.44.
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adel Fahmi Karim
Abstrak :
Pneumonia adalah penyakit pada organ pernafasan manusia. Pneumonia disebabkan oleh bakteri, virus, atau jamur, yang menyebabkan alveolus pada paru-paru terisi oleh cairan. Ada beberapa cara untuk pendeteksian pneumonia, dan salah satunya adalah dengan menggunakan pemotretan x-ray ke dada pasien. Melalui beberapa studi, penggunaan pemrosesan gambar pada gambar x-ray dada pasien dengan algoritma Convolutional Neural Network (CNN) telah mendapatkan hasil yang cukup baik untuk mendeteksi pneumonia. Dengan studi terdahulu sebagai acuan, penelitian ini melakukan klasifikasi pneumonia melalui gambar x-ray menjadi positif dan negatif, serta melakukan klasifikasi lebih lanjut dari pneumonia positif untuk membedakan pneumonia yang disebabkan oleh bakteri dan oleh virus. Penelitian juga berfokus untuk mencari metode pengoptimalan transfer learning terbaik menggunakan pretrained CNN model Residual Nework (ResNet) dengan jenis ResNet18, ResNet50, dan ResNet101. Metode dengan hasil terbesar dari penelitian adalah penerapan dropout dan augmentasi data sekaligus pada ResNet50 yang mendapatkan akurasi 91% untuk klasifikasi dua kelas 88,03% untuk klasifikasi tiga kelas. ......Pneumonia is a respiratory disease that could be caused by bacteria, virus, or fungus. Some of the proven method to detect pneumonia is through x-ray imaging of a person respiratory system. Studies of x-ray images processing using Convolutional Neural Network (CNN) has been conducted before with a good performance result. This research will use preceding studies as reference to classify x-ray image into positive or negative pneumonia, and further will classify the positive result into bacterial infection or viral infection. This research also focused on finding the best optimization transfer learning method to be used on pretrained CNN model ResNet. The best optimization result is to apply data augmentation to dataset and apply dropout layer in the CNN layer using ResNet50, with accuracy of 91% for 2-Class training and 88,03% for 3-Class training.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library