Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Hari Purwanto
"ABSTRAK
Teknologi wearable application menjadi salah satu bagian penting dalam
pengembangan Body-Centric Wireless Communication System (BWCS),
diantaranya adalah implementasi wearable antenna. Banyak penelitian tentang
wearable antenna untuk mendukung wearable application, yang bertujuan untuk
mendapatkan karakteristik terbaik, mudah implementasi, safety, dan sesuai
dengan tujuan dan kebutuhan medis, tetapi sebagian besar dari mereka masih
terbatas pada antena yang bersifat elektris. Ada juga beberapa penelitian antena
tipe magnetik dengan frekuensi single maupun dualband (ganda) dan masih
memungkinkan untuk pengembangan lebih lanjut pada frekuensi multiband.
Pada penelitian disini, wearable antenna yang dibuat adalah untuk aplikasi
biomedis khususnya untuk pemantauan pasien secara nirkabel dengan
karakteristik magnetik yang bekerja pada frekuensi multiband 0,924 GHz (RFID),
2,45 GHz (WLAN) dan 5,8 GHz (WLAN), berbahan substrat tekstil dan patch
tembaga dengan karakteristik magnitudo koefisien refleksi (S11) < -10 dB (VSWR
< 2) dan gain sesuai kebutuhan komunikasi (link budget). Untuk mengetahui
pengaruh tubuh terhadap kinerja antena, simulasi dan pengukuran menggunakan
phantom sebagai model tubuh manusia
Simulasi dilakukan dengan menggunakan software CST Microwave
Studio, desain dibuat pada kondisi free space dan dengan phantom. Hasil
simulasi free space menunjukkan bahwa frekuensi resonansi multiband berada
pada band frekuensi 0,924 GHz, 2,45 GHz dan 5,8 GHz, antena mempunyai
karakteristik magnetik, dengan nilai magnitudo koefisien refleksi (S11) adalah -
18,07 dB pada frekuensi 0,924 GHz, -27,69 dB pada frekuensi 2,45 GHz dan 18,63 dB pada frekuensi 5,8 GHz. Bandwidth yang dihasilkan sebesar 28,7 MHz
untuk frekuensi 0,924 GHz, 39 MHz untuk frekuensi 2,45 GHz serta 259 MHz
untuk frekuensi 5,8 GHz. Sementara gain yang diperoleh adalah -24,86 dB pada
frekuensi 0,924 GHz, -8,75 dB pada frekuensi 2,45 GHz dan 7,27 dB pada
frekuensi 5,8 GHz. Hasil simulasi dengan phantom secara umum tidak mengalami
perubahan nilai parameter antena secara signifikan. Nilai SAR dari hasil simulasi
pada jarak 0 sampai dengan 20 mm dari phantom (dekat tubuh) masih berada
dibawah standar yang dipersyaratkan yaitu 2 W/kg untuk setiap 10 g jaringan
tubuh (European Union : IEC 62209-1).
Dari hasil pengukuran pada free space diperoleh S11 sebesar -20,49 dB
pada frekuensi 0,924 GHz, -33,63 dB pada frekuensi 2,45 GHz dan -14,52 dB
pada frekuensi 5,8 GHz, dengan bandwidth pada masing-masing frekuensi kerja
secara berurutan adalah 125 MHz, 60 MHz dan 454 MHz, sedangkan gain yang
dihasilkan masing-masing -23,37 dBi, -6,7 dBi dan 7,92 dBi serta antena
mempunyai karakteristik magnetik. Sementara pada kondisi phantom S11
diperoleh hasil pengukuran sebesar -21,02 dB pada frekuensi 0,924 GHz, -26,50
dB pada frekuensi 2,45 GHz dan -17,79 dB pada frekuensi 5,8 GHz, dengan
bandwidth pada masing-masing frekuensi kerja adalah 120 MHz, 56 MHz dan
450 MHz, dan gain yang dihasilkan masing-masing sebesar -22,91 dBi, -6,96 dBi
dan 7,76 dBi.
Secara umum, dari hasil simulasi desain antena telah diperoleh
karakteristik dan parameter antena seperti yang diinginkan.

ABSTRACT
Wearable technology application has become one of the important part in
the development of Body-centric Wireless Communications System (BWCS), one
of the application of its is the wearable antenna. There have been studies on the
wearable antenna for medical purposes, safety purposes, etc, but most of them are
still focused to an antenna that is electrically, while the magnetic antenna has not
been explored in many studies. There are also some studies of magnetic type
antennas with single and dualband frequency and still allow for further
development on multiband frequency.
This research, wearable antenna is made for biomedical applications,
especially for wireless patient monitoring with magnetic characteristics that
works on multiband frequency of 0.924 GHz (RFID), 2.45 GHz (WLAN) and 5.8
GHz (WLAN), made from the substrate textiles and copper patch with a
characteristic magnitudo reflection coefficient (S11) < -10 dB (VSWR < 2) and
gain as needed communication (link budget calculation). To determine the effect
of the body on the performance of the antenna, then the simulation and
measurements will use phantom as a model of the human body.
CST Microwave Studio software was utilized, the design of antenna is
made with free space and the phantom condition. Results from the simulation
show that the design without phantom multiband resonant frequency at a
frequency of 0.924 GHz, 2.45 GHz and 5.80 GHz, antenna has the magnetic
characteristics, the magnitude of the reflection coefficient value (S11) each at the desired operating frequency is -18,07 dB at a frequency of 0.924 GHz, at a
frequency of 2.45 GHz is -27,69 dB and -18,63 dB at a frequency of 5.8 GHz.
Bandwidth is generated at frequency of 0.924 GHz is 28,7 MHz, at frequency of
2.45 GHz is 39 MHz, and at frequency of 5.8 GHz is 259 MHz. While the resulting
gain is -24.86 dB at a frequency of 0.924 GHz, -8,33 dB at a frequency of 2.45
GHz and 7.27 dB at a frequency of 5.8 GHz. The simulation results are done with
phantom generally does not change the value of the antenna parameters
significantly. SAR values from the simulation results at a distance of 0 to 20 mm
from the phantom (near the body) remain below the required standard is 2 W / kg
for each 10 g of body tissue (European Union : IEC 62209-1).
From the measurement results in the free space condition are obtained
value of S11 is -20.49 dB at a frequency of 0.924 GHz, -33.63 dB at a frequency of
2.45 GHz and -14.52 dB at a frequency of 5.8 GHz, with bandwidth at each
operating frequency in a sequence is 125 MHz, 60 MHz and 454 MHz, and the
resulting gain in a sequence is -23.37 dBi, 6.7 dBi and 7.92 dBi. While the
measurement result of S11 in the phantom condition is obtained -21.02 dB at a
frequency of 0.924 GHz, -26.50 dB at a frequency of 2.45 GHz and -17.79 dB at a
frequency of 5.8 GHz, the bandwidth at each operating frequency is 120 MHz, 56
MHz and 450 MHz, and the gain generated respectively is -22.91 dBi, -6.96 dBi
and 7.76 dBi.
In general, from the simulation and measurement results have been
obtained characteristics and parameters of the antenna as desired."
2016
T45978
UI - Tesis Membership  Universitas Indonesia Library
cover
Nathanael Antonius
"Keterbatasan rumah sakit dalam memberikan layanan langsung kepada pasien menjadi tantangan untuk memberikan layanan kesehatan yang memadai, responsif, dan bersifat jarak jauh. Penyakit kardiovaskular merupakan penyakit dengan tingkat kematian terbanyak di dunia yang perlu ditangani secara cepat. Penelitian ini bertujuan merancang proses pemantauan pasien kardiologi secara jarak jauh untuk mempercepat waktu respons rumah sakit kepada pasien dalam keadaan darurat serta waktu proses kontrol dan terapi kardiologi melalui implementasi Internet of Things (IoT). Business Process Reengineering (BPR) dan manajemen sistem informasi (MIS) digunakan untuk memperbaiki dua proses layanan pasien kardiologi yaitu, layanan kontrol dan terapi, serta layanan Instalasi Gawat Darurat (IGD) kardiologi. BPR memodelkan dan menyimulasikan enam skenario perbaikan layanan kontrol dan terapi, serta tiga skenario perbaikan layanan IGD kardiologi. Selanjutnya, perancangan MIS dibuat melalui entity relationship diagram (ERD), relational database, use case diagram, dan data flow diagram. Hasil simulasi menunjukkan bahwa perbaikan layanan kontrol dan terapi terbaik adalah skenario implementasi penerapan rekam medis elektronik, relational database, perangkat Remote Patient Monitoring (RPM), serta penambahan karyawan rumah sakit dengan peningkatan kapasitas 52,94% dan pemangkasan waktu layanan 21,70%. Skenario perbaikan layanan IGD kardiologi terbaik dicapai dengan memanfaatkan teknologi multiple vital detection, penerapan perangkat RPM, dan relational database dengan pemangkasan waktu respons 11,89%.

The hospital inability to serve the patients directly is a challenge for hospitals to provide adequate, responsive and remote health services. Besides, the long patient waiting time is a critical problem for the hospital services. The deadly cardiovascular disease needs a quick and accurate treatment. This study aims to design the cardiology remote patient monitoring process to reduce the emergency response time and reduce the outpatient process time using the Internet of Things (IoT). The Business Process Reengineering (BPR) and the Management Information Systems (MIS) were used to improve the cardiology Emergency Medical Services (EMS) and the outpatient process. BPR simulated six outpatient improvement scenarios and three cardiology EMS improvement scenarios. MIS was designed using the entity-relationship diagrams (ERD), the relational databases, the use case diagrams, and the data flow diagrams. Simulation results showed that the best outpatient service improvement scenario was the implementation of electronic health records, relational database, Remote Patient Monitoring (RPM) devices, and the addition of medical staffs with 52.94% capacity increase and 21.70% service time reduction. The best cardiology EMS improvement scenario was reached by implementing multiple vital detection, RPM devices, and relational databases with 11.89% response time reduction."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vashist, Sandeep Kumar
"This book describes the emerging point-of-care (POC) technologies that are paving the way to the next generation healthcare monitoring and management. It provides the readers with comprehensive, up-to-date information about the emerging technologies, such as smartphone-based mobile healthcare technologies, smart devices, commercial personalized POC technologies, paper-based immunoassays (IAs), lab-on-a-chip (LOC)-based IAs, and multiplex IAs. The book also provides guided insights into the POC diabetes management software and smart applications, and the statistical determination of various bioanalytical parameters. Additionally, the authors discuss the future trends in POC technologies and personalized and integrated healthcare solutions for chronic diseases, such as diabetes, stress, obesity, and cardiovascular disorders. Each POC technology is described comprehensively and analyzed critically with its characteristic features, bioanalytical principles, applications, advantages, limitations, and future trends. This book would be a very useful resource and teaching aid for professionals working in the field of POC technologies, in vitro diagnostics (IVD), mobile healthcare, Big Data, smart technology, software, smart applications, biomedical engineering, biosensors, personalized healthcare, and other disciplines.
Acts as an up-to-date resource to emerging POC technologies;
Provides readers with extensive knowledge, competence, and analytical skills in POC technologies, mobile healthcare, and clinical diagnostics;
Explains future trends in POC technologies and personalized and integrated healthcare solutions for chronic diseases."
Switzerland: Springer Nature, 2019
e20509370
eBooks  Universitas Indonesia Library