Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
"Penyelidikan geofisika dengan metode geolistrik tahanan jenis telah dilakukan di Desa Kompas Raya, Kecamatan Pinoh, Kabupaten Melawi, Propinsi Kalimantan Barat. Desa Kompas Raya merupakan daerah yang selalu kekurangan air pada musim kemarau sehingga masyarakat desa kesulitan untuk mendapatkan air bersih untuk mencukupi kebutuhan sehari-hari. Penelitian ini dimaksudkan untuk melihat penyebaran data tahanan jenis baik lateral maupun vertikal secara dua dimensi. Penyebaran data tahanan jenis ini dapat digunakan sebagai dasar untuk mengetahui informasi potensi keberadaan batuan pembawa air tanah (akuifer) di area penelitian. Metode pengukuran adalah geolistrik sounding yang dilakukan dengan Konfigurasi Schlumberger. Jumlah titik ukur sounding adalah 30 titik yang dibagi menjadi 6 lintasan survei dengan tiap lintasan terdapat 5 titik ukur sounding. Pada penelitian ini, pengolahan data geolistrik dilakukan dengan menggunakan teknik pemodelan inversi 2D berdasarkan data geolistrik sounding. Teknik pemodelan ini akan mengiterpolasi data sounding dalam satu lintasan secara otomatis dan kemudian data kemudian tahanan jenis semu diinversi menjadi tahanan jenis sebenarnya. Hasil yang diperoleh dari penelitian ini adalah terdapatnya dua lapisan batuan dengan nilai tahanan jenis relatif kecil yaitu berturut-turut kurang dari 30 Ohm.m dan 20 Ohm.m. Lapisan pertama diinterpretasi sebagai akuifer dangkal (akuifer-1) dengan kedalaman sekitar 20 m sampai 30 m, sedangkan lapisan kedua diinterpretasi sebagai akuifer dalam (akuifer-2) dengan kedalaman sekitar 90m sampai 100 m."
551 EKSPLOR 34:1 (2013)
Artikel Jurnal  Universitas Indonesia Library
cover
Ewin Rahman Dzuhri
"Magnetotelurik (MT) adalah metode geofisika yang umumnya digunakan dalam eksplorasi potensi sumber daya alam panas bumi. Metode MT dapat menggambarkan penampang resistivitas bawah permukaan bumi mulai dari ratusan meter hingga ratusan kilometer tergantung dari periode pengukuran. Dengan menggabungkan tiga studi yaitu geologi, geokimia dan geofisika, maka dapat mendileneasi sistem geotermal yang terdiri dari clay cap, reservoir, dan sumber panasnya. Bagaimanapun juga, dalam akuisisi data MT, kita juga harus melihat kondisi sekitar daerah penelitian karena pasti terdapat gangguan yang mempengaruhi data MT. Salah satu gangguan dari sekitar daerah penelitian adalah gangguan yang berasal dari laut atau biasa disebut dengan sea effect. Untuk mengurangi gangguan dari sea effect, maka kita harus memahami pengaruh apa saja yang dihasilkan dari sea effect terhadap data MT untuk menghindari mis interptretasi data MT setelah diolah maupun setelah inversi. Metode yang digunakan dalam penelitian ini adalah pemodelan simulasi dan inversi 3D menggunakan data sintetik dan data real. Tujuan utama dari penelitian ini adalah menyimpulkan apa yang disebabkan oleh sea effect dalam mempengaruhi data MT. Sea effect ini dapat menyebabkan mis interpretasi pada data MT. Jadi, dengan memahami pengaruh sea effect pada data MT dan mengurangi efeknya dapat meningkatkan kualitas data MT dalam menggambarkan bawah permukaan dan mengurangi resiko eksplorasi geotermal. Berdasarkan studi yang sudah dilakukan diketahui bahwa sea effect mempengaruhi data magnetotelurik dalam kurva apparent resistivity dan fasenya pada semua rentang frekuensi yang berkorelasi dengan jarak antara titik stasiun dengan lautnya. Untuk hasil inversi 3-Dimensi, pengaruh dari laut cukup signifikan dengan adanya nilai-nilai resisitivitas yang kurang sesuai dengan model awal dan dapat diatasi dengan menggunakan oceanic model pada proses inversi.

Magnetotelluric (MT) is a geophysical method commonly used in the geothermal survey. MT method can image the resistivity of earth from a few tens of meters to several hundred kilometers depending on the measurements periods. With geology and geochemistry as supporting data (so-called 3G), integrated 3G data can be very powerful to delineate geothermal system which is clay cap, reservoir, and heat source.  However, in MT data acquisition we have to pay attention to the surroundings of the survey area because there are noises that will affect MT data. One of the noises from the surrounding area is noise from the sea or it is also called coast effect. In order to reduce the noise from MT data acquisition, especially noise from the sea, and miss interpretation of MT data after processing, we have to study the impact of coast effect on MT data during the acquisition and even when inversion. The method of this study is using forward modeling and 3-D inversion using synthetic MT data. The aim of this study is to conclude what causes showed up from MT data affected by the coast effect noise. This sea effect could lead to magnetotelluric data miss interpretation. Thus, by understanding the sea effect on magnetotelluric data and correct it, could improve the quality of subsurface image and lower the geothermal exploration risks. Based on this study, the effect of sea to magnetotelluric data shown in apparent resistivity and phase where this effect correlated to the distance of MT station and the sea. For 3-D inversion, the effect of sea is making inappropriate result in resistivity value. This effect can be overcome by using oceanic model in 3-D inversion process."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhara Adhnandya Kumara
"ABSTRAK
Saat ini Indonesia sedang berupaya memenuhi kebutuhan energi untuk kepentingan ketahanan energi nasional. Salah satu energi yang sedang diupayakan adalah energi baru dan terbarukan, salah satunya energi panas bumi. Untuk mencapai target tersebut, eksplorasi energi panas bumi perlu diintensifkan. Dalam eksplorasi panas bumi, metode yang sering digunakan adalah metode magnetotelurik. Dalam melakukan survey magnetotelluric, banyak hal yang perlu diperhatikan dalam membuat desain survey. Salah satu parameter penting dalam proses akuisisi data adalah mengetahui jumlah dan jarak yang tepat antar stasiun untuk menghasilkan citra bawah permukaan yang terbaik. Jarak antar stasiun tidak boleh terlalu besar, dikhawatirkan resolusi yang didapat terlalu rendah dan terjadi ekstraplorasi pada saat pengolahan data. Namun, jika jarak terlalu sempit juga akan memakan biaya dan waktu selama pengukuran. Khususnya pada survei magnetotelluric, untuk mendapatkan data yang dalam dibutuhkan waktu pengukuran yang lebih lama. Biasanya dalam eksplorasi panas bumi, pengukuran data magnetotelurik dapat dilakukan hingga 24 jam. Sehingga jika semakin banyak titik yang diukur, semakin lama waktu yang dibutuhkan untuk mengukurnya. Saat ini belum ada penelitian yang membahas jarak optimum perolehan data magnetotelurik untuk eksplorasi panas bumi. Penggunaan jarak antar stasiun pada penelitian sebelumnya sangat bervariasi. Hal ini tentunya mempengaruhi gambaran sistem panas bumi yang dihasilkan dari pengolahan data magnetotelurik tersebut. Penelitian ini bertujuan untuk mengetahui jarak optimal antar stasiun untuk eksplorasi di lapangan panas bumi. Dimana penelitian ini akan dilakukan dengan melakukan pemodelan maju (forward modelling) dan pemodelan inversi (inverse modelling). Dengan membuat beberapa model dan memvariasikan jarak antar stasiun maka dapat disimpulkan jarak optimal antar stasiun. Berdasarkan studi yang dilakukan diketahui bahwa jarak 500 - 1000 meter untuk area yang diinginkan mampu menggambarkan batas-batas clay cap dengan baik sehingga jarak tersebut optimal. Sedangkan di luar areal kepentingan diperlukan beberapa strapping station dengan jarak 1000 meter. Dibandingkan dengan inversi 2D, inversi 3D mampu mendeskripsikan sistem dengan lebih baik.
ABSTRACT
Currently, Indonesia is trying to meet energy needs for the benefit of national energy security. One of the energies that is being pursued is new and renewable energy, one of which is geothermal energy. To achieve this target, geothermal energy exploration needs to be intensified. In geothermal exploration, the method that is often used is the magnetoteluric method. In conducting a magnetotelluric survey, many things need to be considered in making a survey design. One of the important parameters in the data acquisition process is knowing the exact number and distance between stations to produce the best subsurface imagery. The distance between stations should not be too large, it is feared that the resolution obtained is too low and extraploration occurs during data processing. However, if the distance is too narrow it will also cost money and time during measurement. Especially in the magnetotelluric survey, it takes a longer measurement time to obtain the required data. Usually in geothermal exploration, the measurement of magnetoteluric data can be carried out for up to 24 hours. So that if the more points are measured, the longer it will take to measure it. Currently, there is no research that discusses the optimum distance to obtain magnetoteluric data for geothermal exploration. The use of the distance between stations in previous studies varies widely. This certainly affects the description of the geothermal system resulting from the processing of the magnetoteluric data. This study aims to determine the optimal distance between stations for exploration in geothermal fields. Where this research will be carried out by doing forward modeling (forward modeling) and inversion modeling (inverse modeling). By making several models and varying the distance between stations, it can be concluded that the optimal distance between stations. Based on the study conducted, it is known that the distance of 500 - 1000 meters for the desired area is able to describe the boundaries of the clay cap well so that the distance is optimal. Meanwhile, outside the area of ​​interest, several strapping stations with a distance of 1000 meters are required. Compared to 2D inversion, 3D inversion is able to describe the system better."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ilma Afrilia Riska
"Di alam, emas berasal dari larutan hidrotermal dan diendapkan dalam bentuk endapan epitermal. Struktur berupa patahan berperan penting dalam proses pengendapan mineral emas karena merupakan jalan mengalirnya larutan hidrotermal menuju permukaan. Salah satu metode eksplorasi emas adalah metode gravitasi. Metode ini mengidentifikasi zona mineralisasi emas dari struktur patahan yang ada di daerah penelitian. Pemodelan inversi 3D merupakan salah satu metode dalam gravitasi yang dapat memberi informasi yang jelas pada target survey. Pemodelan tersebut dianggap lebih realistis karena bentuk model geometri dapat disesuaikan dengan bentuk benda sebenarnya di alam dan perhitungannya pun lebih akurat. Penelitian dilakukan berdasarkan hasil survey gravitasi Pongkor yang telah dilakukan oleh PT Antam Tbk. Endapan hidrotermal Pongkor termasuk ke dalam tipe endapan sulfidasi rendah. Pada tipe endapan epitermal sulfidasi rendah, emas diendapkan dalam urat-urat vein yang berasosiasi dengan patahan. Pengolahan data dilakukan dengan analisis derivative, analisis spektrum, dan pemodelan inversi 3D gravitasi. Berdasarkan hasil survey dan olah data, tampak bahwa zona mineralisasi emas berada pada bagian tengah daerah penelitian yang ditandai dengan anomali gravitasi yang tinggi pada struktur patahan. Patahan yang terdeteksi pada zona potensi mineralisasi emas adalah sebanyak 8 patahan. Dari hasil inversi 3D, zona mineralisasi emas tersebut memiliki densitas sebesar 2,8-3,34 g/cc.

In nature, gold are originated from hydrothermal liquid and deposited in epithermal deposit form. Structures such as faults have important role in the process of gold deposition since it is become the hydrothermal flow path to the surface. One of the method that can be used to do gold exploration is gravity method. This method identify the gold mineralization zone from faults on the research region. 3D inversion modeling is one of geophysics method that can give clear information on the target. The modeling can be said more realistic since the geometry model can be fitted with the real condition in nature and the measurement be more accurate. The research is done based on gravity survey result by PT Antam Tbk. Pongkor hydrothermal deposit categorized as epithermal low sulphidation. The processing data is done by do derivative analysis, spectrum analysis, and 3D gravity inversion modeling. Based on the survey result and processing data, gold mineralization zone are at the middle of research region that have high gravity anomaly at the faults. There are eight faults detected at the gold mineralization potential zone. From 3D inversion result, density of the gold mineralization zone is 2,74 3,34 g cc. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S67159
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indra Kurniawan
"Lapangan geotermal “x” merupakan salah satu lapangan geotermal di Indonesia yang sedang dalam proses pengembangan. Tahap eksplorasi merupakan tahapan yang paling mempunyai resiko yang besar. Untuk mengurangi resiko tersebut, diperlukan data – data yang saling terintegrasi untuk menggambarkan sistem geotermal bawah permukaan secara representatif. Data magnetotellurik dan gravitasi merupakan data utama dalam pembuatan model konseptual sistem geotermal lapangan “x”. Selain itu juga didukung dengan data geokimia dan data sumur landaian suhu. Dari metode magnetotellurik yaitu berupa analisis fasa tensor dan induction arrow didapatkan arah struktur utama atau bisa disebut dengan geoelectrical strike yaitu berarah Timurlaut – Baratdaya atau lebih tepatnya mempunyai arah N80oE. Hal ini juga diperkuat dari metode gravitasi berupa analisis derivatif dan data geologi regional dimana struktur yang teridentifikasi juga dominan berarah Timurlaut – Baratdaya. Dari hasil pengolahan data gravitasi berupa data complete bouger anomaly mempunyai nilai 53 – 82 mgal dimana daerah yang mempunyai anomali tinggi berada pada daerah sekitar manifestasi hingga ke Timur daerah penelitian. Hasil pemodelan inversi 3D dari data magnetotellurik didapatkan batuan claycap mempunyai ketebalan berkisar antara 400 – 500 m. Batuan yang berperan sebagai heatsource merupakan batuan intrusi yang mempunyai nilai resistivitas hingga mencapai 400 ohm-m. Dari analisis data geokimia menunjukkan daerah outflow pada sistem geotermal yaitu daerah dimana terdapatnya manifestasi yang muncul ke permukaan. Dari semua data tersebut dapat diintegrasikan menjadi model konseptual sistem geotermal dimana dapat digunakan sebagai acuan dalam melakukan pemboran geotermal.

The geothermal field "x" is one of the geothermal fields in Indonesia which is in the process of being developed. The exploration stage is the stage that has the greatest risk. To reduce this risk, integrated data is needed to describe the subsurface geothermal system in a representative manner. Magnetotelluric and gravity data are the main data in making a conceptual model of the field "x" geothermal system. Also besides supported by geochemical data and temperature sloping well data. From the magnetotelluric method, namely in the form of phase tensor analysis and induction arrow, the direction of the main structure is obtained or it can be called a geoelectrical strike, which is in the Northeast - Southwest direction or more precisely has a direction of N80oE. This is also reinforced by the gravity method in the form of derivative analysis and regional geological data where the identified structures are also predominantly northeast-southwest trending. From the results of processing gravity data in the form of complete bouge anomaly data has a value of 53 - 82 mgal where areas that have high anomalies are in the area around the manifestation to the east of the study area. The results of 3D inversion modeling from the magnetotelluric data show that clay cap rocks have a thickness ranging from 400 - 500 m. Rocks that act as heat sources are intrusive rocks that have a resistivity value of up to 400 ohm-m. The geochemical data analysis shows the outflow area in the geothermal system, namely the area where there are manifestations that appear to the surface. From all these data, it can be integrated into a conceptual model of the geothermal system which can be used as a reference in carrying out geothermal drilling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dandi Baskoro Soebakir
"Keberadaan struktur geologi merupakan salah satu parameter penting dalam menentukan zona permeabel pada suatu sistem geotermal. Penelitian ini dilakukan di salah satu area prospek geotermal di zona Sistem Sesar Sumatera (GSF) yang termasuk dalam segmen Angkola dan Barumun yang bertujuan untuk mengidentifikasi kemenerusan fitur permukaan hingga bawah permukaan terutama struktur geologi yang berkaitan erat dengan zona permeabel dengan mengintegrasikan data geologi, geokimia, dan geofisika. Teknologi remote sensing digunakan untuk mengidentifikasi struktur geologi yang terobservasi di permukaan yang dikorelasikan dengan persebaran manifestasi permukaan. Namun, tidak semua struktur geologi yang terobservasi di permukaan dapat diamati dan kemenerusannya dari permukaan hingga bawah permukaan dilakukan dengan pendekatan geofisika menggunakan data magnetotelurik (MT) dan gravitasi. Interpretasi struktur geologi permukaan berdasarkan analisis remote sensing dan persebaran manifestasi permukaan memiliki korelasi yang positif dengan hasil gravitasi adanya struktur graben dari zona GSF yang memiliki orientasi baratlaut-tenggara. Kelurusan dan karakteristik (arah dan kemiringan) struktur ditandai dengan adanya kontras nilai gravitasi, nilai Horizontal Gradient Magnitude (HGM) maksimum, dan nilai zero Second Vertical Derivative (SVD) serta analisis Multi Scale-Second Vertical Derivative (MS-SVD). Hasil interpretasi struktur bawah permukaan gravitasi berkorelasi positif dengan analisis parameter MT (splitting curve MT) yang dapat mengindikasi zona struktur bawah permukaan. Gabungan interpretasi struktur permukaan dan bawah permukaan teridentifikasi adanya 5 struktur (F1, F2, F3, F4, dan F5) yang diklasifikasikan sebagai Struktur Pasti (F1, F2, F3, dan F4) dan Struktur Diperkirakan (F5) yang memiliki orientasi baratlaut-tenggara. Struktur F3 yang berorientasi baratlaut-tenggara merupakan struktur utama yang berperan sebagai fluid conduit (zona permeabel) yang dibuktikan dengan adanya manifestasi mata airpanas bertipe klorida. Berdasarkan hasil pemodelan inversi 3-D MT dan pemodelan kedepan 2-D gravitasi dapat mendelineasi zona reservoir pada kedalaman 1500 – 2000-meter yang dikontrol oleh struktur F3 dan zona reservoir berasosiasi dengan batuan metasediment yang nantinya dapat menentukan lokasi sumur pengeboran. Untuk memvisualisasikan sistem geotermal secara komprehensif, maka dikembangkan model konseptual dengan mengintegrasikan model geofisika yang memiliki kualitas data optimum dengan data geologi dan geokimia yang saling berkorelasi, sehingga dapat dijadikan dasar dan acuan dalam menentukan lokasi pengembangan sumur produksi dan reinjeksi dan menurunkan resiko kegagalan dalam well targeting.

The existence of geological structures is one of the important parameters in determining the permeability zone in a geothermal system. This study was conducted in one of the geothermal prospect areas in the Sumatera Fault System (GSF) zone included in the Angkola and Barumun segments which aims to identify the continuity of surface to subsurface features, especially geological structures that are closely related to permeability zones by integrating geological, geochemical, and geophysical data. Remote sensing technology is used to identify geological structures observed at the surface that are correlated with the distribution of surface manifestations. However, not all surface-observed geological structures can be observed and their continuity from the surface to the subsurface is done with a geophysical approach using magnetotelluric (MT) and gravity data. Interpretation of surface geological structures based on remote sensing analysis and the distribution of surface manifestations has a positive correlation with the gravity results of the graben structure of the GSF zone which has a northwest-southeast orientation. The alignment and characteristics (direction and slope) of the structure are characterized by the contrast of gravity values, maximum Horizontal Gradient Magnitude (HGM) values, and zero Second Vertical Derivative (SVD) values as well as Multi Scale-Second Vertical Derivative (MS-SVD) analysis. The results of gravity subsurface structure interpretation are positively correlated with MT parameter analysis (splitting curve) which can indicate subsurface structure zones. The combined interpretation of surface and subsurface structures identified 5 structures (F1, F2, F3, F4, and F5) classified as Certain Structures (F1, F2, F3, and F4) and Estimated Structure (F5) that have a northwest-southeast orientation. The northwest-southeast oriented F3 structure is the main structure that acts as a fluid conduit (permeability zone) as evidenced by the manifestation of chloride-type hot springs. Based on the results of 3-D MT inversion modeling and 2-D gravity forward modeling, it can delineate the reservoir zone at a depth of 1500 - 200 meters controlled by the F3 structure and the reservoir zone is associated with metasedimentary rocks which can later determine the location of drilling wells. To visualize the geothermal system comprehensively, a conceptual model was developed by integrating geophysical models that have optimum data quality with geological and geochemical data that are correlated, so that it can be used as a basis and guide in determining the location of production well development and reinjection and reduce the risk of failure in drilling targets."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syafrima Wahyu
"Telah dilakukan penelitian guna delineasi zona prospek sistem panasbumi daerah ldquo;Z rdquo; menggunakan permodelan tiga Dimensi magnrtotellurik didukung data terpadu berupa geologi dan geokimia serta terintegrasi data gravitasi. Daerah panasbumi ldquo;Z rdquo; dalam tatanan tektoniknya termasuk pada jalur backarc Sumatera, tepat pada salah satu segmen sesar Sumatera bagian selatan, disusun oleh batuan vulkanik dan sedimen klastik yang berumur Tersier hingga Kuarter Andesit-Basalt . Gejala adanya sistem panasbumi pada daerah penelitian ditandai dengan kemunculan manifestasi permukaan berupa alterasi dan lima mata air panas bersuhu 44,4 - 92,5 oC, pH 8,19 - 9,43 dan bertipe bikarbonat, sulfat-bikarbonat, serta sulfat-klorida. Pembentukan sistem panasbumi dipengaruhi oleh aktivitas tektonik menyerong oblique antara lempeng Samudera India dan Lempeng Kontinen Eurasia searah dengan pola sesar Sumatera.
Berdasarkan analisis air panasbumi temperatur reservoir diambil melalui perhitungan geothermomether SiO2 Fournier 1977 , Na-K Giggenbach 1988 , Na-K-Ca, diagram Na-K-Mg serta diagram Enthalphy - Cloride Mixing Model berkisar 145 - 155oC, termasuk dalam sistem panas bumi bertemperatur sedang. Berdasarkan inversi tiga dimensi data MT didapatkan kedalaman Top of Reservoar TOR sistem panasbumi daerah ldquo;Z rdquo; sekitar 400 m elevasi 50 mdpl sedangkan berdasarkan forward modeling data gravitasi lintasan 2 dimensi diperkirakan sumber panas berupa cooling instrusion diperkirakan batuan gabro ; resistivitas ge; 450 ?m ; densitas 2,95 - 3,15 gr/cc dan reservoar berupa batupasir resistivitas 50 - 250 ?m ; densitas 2,60 gr/cc . Sistem panasbumi daerah penelitian termasuk jenis tektonik fracture zone dengan temperatur sedang dengan luas daerah prospek sekitar 7,5 km2.

A study for delineating geothermal system of prospect area ldquo Z rdquo has been done by using tree dimension modeling of magnetotelluric supported unified data just like geological and goechemical and integrated gravity data. Geothermal area ldquo Z rdquo in tectonic setting included in Sumatra volcanic backarc, right on one of the southern part of Sumatra fault segment. Compodes by volcanic and clastic sendimentary rock are Tertiary to Quarternary Andesite Basalt. The existance of goethermal system in this area is indicated by the presence of thermal manifestation in form of alteration and five hot springs temperature in the ranges 44.4 ndash 92.5 oC, and pH 8.19 ndash 9.43 and type of fluida are bicarbonate, sulphate bicarbonate, and sulfate chloride. The development of geothermal system is affected by tectonic oblique between the Indian Ocean plate and the Eurasian Contenent Plate direction of the Sumatra fault patterns.
Based on the analysis of geothermal water reservoir temperature are taken through the calculation geothermometer SiO2 Fournier 1977, Na K Giggenbach 1988 , Na K Ca, Na K Mg diagram and Enthalpi Mixing Cloride Model range 145 ndash 155 oC, classified as intermediate temperature. Base on a three dimensional inversion of the magnetotelluric data obtained depth Top of Reservoir TOR geothermal system area ldquo Z rdquo about 400 m elevation 50 meters above sea leavel , while based on the two dimensional of the gravity data predicted heat sources such as cooling instrusion estimated gabbro density 2,95 ndash 3,15 gr cc and reservoar such as sandstone resistivity 50 ndash 250 m density 2,60 gr cc . The Geothermal systems of research area classified as the type of intermediate temperature tectonic fracture zone with prospect area about 7,5 km2.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46881
UI - Tesis Membership  Universitas Indonesia Library