Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Darell Hendry
Abstrak :
Chatbot sebagai asisten virtual yang digunakan oleh suatu instansi dapat memberikan manfaat bagi penggunanya. Dengan adanya chatbot, pengguna dapat berbicara langsung kepada chatbot melalui pesan singkat, yang kemudian sistem secara spontan mengidentifikasi intent pesan tersebut dan merespons dengan tindakan yang relevan. Sayangnya, cakupan pengetahuan chatbot terbatas dalam menangani pesan oleh pengguna yang semakin bervariasi. Dampak utama dari adanya variasi tersebut adalah adanya perubahan pada komposisi label intent. Untuk itu, penelitian ini berfokus pada dua hal. Pertama, pemodelan topik untuk menemukan intent dari pesan pengguna yang belum teridentifikasi intent-nya. Kedua, pemodelan topik digunakan untuk mengorganisasi intent yang sudah ada dengan menganalisis hasil keluaran model topik. Setelah dianalisis, terdapat dua kemungkinan fenomena perubahan komposisi intent yaitu: penggabungan dan pemecahan intent, dikarenakan terdapat noise saat proses anotasi dataset orisinal. Pemodelan topik yang digunakan terdiri dari Latent Dirichlet Allocation (LDA) sebagai model baseline dan dengan model state-of-the-art Top2Vec dan BERTopic. Penelitian dilakukan terhadap dataset salah satu e-commerce di Indonesia dan empat dataset publik. Untuk mengevaluasi model topik digunakan metrik evaluasi coherence, topic diversity dan topic quality. Hasil penelitian menunjukkan model topik BERTopic dan Top2Vec menghasilkan nilai topic quality 0.036 yang lebih baik dibandingkan model topik LDA yaitu -0.014. Terdapat pula pemecahan intent dan penggabungan intent yang ditemukan dengan analisis threshold proporsi. ......Chatbot, as a virtual assistant used by an institution, can provide benefits for its users. With a chatbot, users can speak directly to the chatbot via a short message, which then the system spontaneously identifies the intent of the message and responds with the relevant action. Unfortunately, the scope of chatbot knowledge is limited in handling messages by an increasingly varied user. The main impact of this variation is a change in the composition of the intent label. For this reason, this research focuses on two things. First, topic modeling to find intents from user messages whose intents have not been identified. Second, topic modeling is used to organize existing intents by analyzing the output of the topic model. After being analyzed, there are two possible phenomena of changing intent composition: merging and splitting intents because there is noise during the annotation process of the original dataset. The topic modeling used consists of Latent Dirichlet Allocation (LDA) as the baseline model and the state-of-the-art Top2Vec and BERTopic models. The research was conducted on one dataset of e-commerce in Indonesia and four public datasets. The evaluation metrics of coherence, topic diversity, and topic quality were used to evaluate the topic model. The results showed that the BERTopic and Top2Vec topic models produced a topic quality value of 0.036, better than the LDA topic model, which was -0.014. There are also intent splitting and intent merging found by proportion threshold analysis.
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jefka Dhammananda
Abstrak :
Pesatnya perkembangan teknologi informasi dan komunikasi menuntut adanya inovasi dalam pengembangan aplikasi agar dapat mengikuti perkembangan yang cepat tersebut. Segari adalah salah satu penyedia layanan supermarket online yang populer di Indonesia. Segari merupakan perusahaan yang berlandasan customer centric dan mempunyai nilai Be Obsessed with our Customers, sangat mengedepankan kebutuhan dari pelanggannya. Minimnya sumber daya manusia dan banyaknya ulasan pelanggan yang perlu di analisis menghambat proses penggalian informasi dari ulasan pelanggan tersebut, sehingga diperlukan model pembelajaran mesin yang dapat secara otomatis melakukan analisis sentimen untuk mengklasifikasikan ulasan menjadi sentimen positif atau negatif. Informasi yang diambil dari analisis sentimen dapat digunakan sebagai referensi untuk menjaga kualitas layanan berdasarkan sentimen positif, sedangkan hasil dari sentimen negatif dapat digunakan sebagai bahan evaluasi untuk meningkatkan layanan dan aplikasi Segari. Dalam penelitian ini, peneliti membahas implementasi model analisis sentimen menggunakan ulasan pelanggan dari Google Play Store. Metode pembuatan model dimulai dari pengumpulan data, pelabelan data, pra proses data, ekstraksi fitur, model klasifikasi sentimen, evaluasi model, dan pemodelan topik. Peneliti menggunakan dua algoritma klasifikasi, Naive Bayes Classifier (NB) dan Support Vector Machine (SVM), pada total 10.507 ulasan. Data menunjukkan bahwa 74,37% ulasan mengungkapkan sentimen positif, sedangkan 25,63% mengungkapkan sentimen negatif. Hasil penelitian menunjukkan bahwa algoritma SVM dengan oversampling mencapai kinerja model terbaik, dengan recall sebesar 89,98%. Selain itu, peneliti menggunakan Latent Dirichlet Allocation (LDA) untuk mengidentifikasi topik terkait dengan perspektif pelanggan tentang Segari yang selanjutnya disampaikan kepada tim terkait. Hasil analisis mengungkapkan bahwa terdapat pelanggan yang puas dan kecewa dengan proses pengiriman produk. Pelanggan umumnya sudah puas dengan kualitas dan kesegaran dari produk. Beberapa pelanggan merasa kecewa karena pesanan yang kosong atau tidak lengkap dalam paket. Terdapat pelanggan yang puas dan kecewa terhadap aplikasi antarmuka pengguna, kecepatan, maupun kinerja aplikasi. Terdapat pelanggan yang puas dan kecewa terhadap harga, promo, dan voucher yang tersedia. Beberapa pelanggan merasa kecewa terhadap servis yang diberikan oleh customer service. Secara keseluruhan, penelitian ini memperluas pengetahuan tentang metode analisis sentimen dan memberikan wawasan tentang melakukan penelitian terkait analisis sentimen dan ulasan pelanggan. ......The rapid development of information and communication technology demands innovation in application development to keep up with such rapid advancement. Segari is one of the popular online supermarket service providers in Indonesia. Segari is a customer-centric company with a core value of being obsessed with its customers, prioritizing their needs. The lack of human resources and the abundance of customer reviews that need to be analyzed hinder the process of extracting information from these reviews. Therefore, a machine learning model is needed to automatically perform sentiment analysis and classify the reviews into positive or negative sentiments. The information extracted from sentiment analysis can be used as a reference to maintain service quality based on positive sentiments, while the results of negative sentiments can be used for evaluation to improve Segari's services and application. In this research, the implementation of a sentiment analysis model using customer reviews from the Google Play Store is discussed. The model development process includes data collection, data labeling, data preprocessing, feature extraction, sentiment classification model, model evaluation, and topic modeling. The researcher utilized two classification algorithms, Naive Bayes Classifier (NB) and Support Vector Machine (SVM), on a total of 10,507 reviews. The data shows that 74.37% of the reviews express positive sentiments, while 25.63% express negative sentiments. The results of the study indicate that the SVM algorithm with oversampling achieved the best model performance, with a recall of 89.98%. Additionally, the researcher used Latent Dirichlet Allocation (LDA) to identify topics related to customer perspectives on Segari, which will be communicated to the relevant team. The analysis revealed that some customers are satisfied while others are disappointed with the product delivery process. Customers generally expressed satisfaction with the quality and freshness of the products. Some customers felt disappointed due to missing or incomplete items in their orders. There were mixed opinions about the user interface, speed, and performance of the application. Customers also expressed satisfaction and dissatisfaction with the available prices, promotions, and vouchers. Some customers felt disappointed with the service provided by the customer service team. Overall, this paper extends knowledge of sentiment analysis methods and provides insights on conducting research related to sentiment analysis and customer reviews.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dian Arianto
Abstrak :
Ulasan adalah opini seseorang yang ditulis mengenai pengalamannya terhadap suatu produk atau jasa. Ulasan umumnya ditulis pada platform media sosial atau marketplace. Seiring dengan berkembangnya teknologi internet dan produk yang dijual secara daring, ulasan sangat penting peranannya karena dapat memengaruhi keputusan seseorang dalam memutuskan pilihannya terhadap suatu produk/kegiatan/jasa. Penelitian ini berfokus untuk melakukan analisis sentimen berbasis aspek dan pemodelan topik pada destinasi pariwisata Indonesia yaitu Candi Borobudur dan Candi Prambanan. Analisis sentimen berbasis aspek dilakukan menggunakan lima pendekatan classical machine learning yaitu Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), Random Forest, dan Extra Trees (ET) dengan menggunakan fitur unigram+bigram+trigram dan memanfaatkan kombinasi penggunaan data latih dan data uji, penggunaan penghapusan stopwords, penggunaan stemming dan emoji processing, dan penggunaan data latih yang di-over-sampling. Kinerja model dievaluasi dengan membandingkan skor F1 pada masing-masing hasil eksperimen untuk mengetahui skenario terbaik yang dapat digunakan untuk ulasan pada bidang pariwisata. Aspek yang digunakan pada penelitian ini yaitu ada enam aspek sesuai rekomendasi aspek dari World Tourism Organization (WTO) yaitu Daya Tarik, Amenitas, Aksesibilitas, Citra, Harga, dan Sumber Daya Manusia (SDM). Setelah melakukan analisis sentimen berbasis aspek, dilakukan pemodelan topik untuk mengetahui topik apa saja yang umum ditemukan pada setiap aspek pariwisata dan setiap polaritas sentimen ulasan. Metode yang digunakan dalam pemodelan topik adalah Latent Dirichlet Allocation (LDA) yang dievaluasi dengan coherence score. Data yang digunakan adalah ulasan pengguna Google Maps dan Tripadvisor. Hasil eksperimen menunjukkan bahwa model LR adalah model yang dapat memprediksi data dengan baik pada hampir semua skenario pada setiap aspek pada penelitian ini. Model LR mendapatkan skor tertinggi pada aspek Daya Tarik (Skenario 4) dengan skor 84,4%, Amenitas (Skenario 11) 84,2%, Aksesibilitas (Skenario 11) 89,1%, Citra (Skenario 3) 70%, dan SDM (Skenario 12) dengan 92,8%. Sementara itu, model DT dapat memprediksi data dengan baik pada aspek Harga (Skenario 6) dengan skor 91,3%. Dari hasil pemodelan topik, dapat direkomendasikan beberapa hal untuk perkembangan pariwisata di Candi Borobudur dan Candi Prambanan. ......Reviews are opinions written by someone about their experience of a product or service. Reviews can be written on social media platforms or marketplaces. Along with the development of internet technology and products sold online, reviews are very important because they can influence a person's decision in deciding their choice of a product/activity/service. This study focuses on conducting aspect-based sentiment analysis and topic modelling on Indonesia’s tourism destinations, which are Borobudur Temple and Prambanan Temple. Aspect-based sentiment analysis was done using five classical machine learning algorithms which are Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), Random Forest, and Extra Trees (ET) using the unigram+bigram+trigram feature and the application of combination of the use of training and test data, stopwords removal, the use of stemming and emoji processing, and the use of over-sampled training data. The performance of models was evaluated by comparing the F1-scores on each experimental result to find out the best scenario that can be used for reviews on tourism domain. The aspects used in this study are six aspects according to the recommendations of the World Tourism Organization (WTO) which are Attractions, Amenities, Accessibility, Image, Price, and Human Resources (HR). After conducting an aspect-based sentiment analysis, topic modelling was carried out to find out which topics were most widely found in each tourism aspect and each polarity sentiment review. The method used in topic modelling is Latent Dirichlet Allocation (LDA) and evaluated by its coherence score. The data used is Google Maps and Tripadvisor user reviews. The experimental results show that the LR model is a model that can predict the data well in almost all scenarios in every aspect of this study. The LR model achieved the highest score on Attractions (Scenario 4) with a score of 84,4%, Amenity (Scenario 11) 84,2%, Accessibility (Scenario 11) 89,1%, Image (Scenario 3) 70%, and SDM (Scenario 12) 92,8%. Meanwhile, the DT model can predict the data well on the Price aspect (Scenario 6) with a score of 91,3%. From the results of topic modelling, we recommend some approaches for the development of tourism in Borobudur Temple and Prambanan Temple.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yusak Sutikno
Abstrak :
Pandemi covid-19 dan kebijakan-kebijakan penanggulangannya telah mengubah cara hidup dan kebiasaan banyak orang di seluruh dunia. Terbatasnya pergerakan dan aktivitas masyarakat mendorong mereka untuk mengandalkan sektor pengiriman barang dalam upaya pemenuhan kebutuhan. Hal ini menjadikan sektor usaha pengiriman barang menjadi bagian penting dalam pemenuhan kebutuhan masyarakat di tengah pandemi. Tersedianya akun layanan resmi tiap penyedia barang di media sosial Twitter sebagai wadah pengaduan dan aspirasi pelanggan, memungkinkan untuk dilakukan analisis tren kebutuhan hingga mengukur kepuasan pelanggan terhadap layanan sektor jasa ini sebelum dan selama pandemi. Penelitian mengenai analisis sentimen pelanggan terhadap suatu produk maupun jasa sudah banyak dilakukan, namun implementasi pendekatan analisis Time Window Lexicon–TFIDF-SVM dan pemodelan topik LDA-Mallet terintegrasi belum banyak dilakukan, terutama dalam konteks analisis sentimen pada sektor jasa pengiriman barang. Penelitian ini menggunakan data Twitter yang diperoleh dengan metode scrapping dengan rentang waktu Oktober 2019 - September 2020 pada lima penyedia layanan pengiriman barang paling populer di Indonesia. Pendekatan leksikon dipergunakan dalam pembentukan data latih, dimana dari data latih ini diperoleh model klasifikasi memperoleh tingkat akurasi 89,21% kemudian diinferensikan dengan pendekatan statistik TFIDF-SVM untuk memprediksi polaritas sentimen keseluruhan data. Penelitian ini memberikan hasil bahwa: (1) Pandemi covid-19 melalui parameter kebijakan penanganan pandemi secara signifikan meningkatkan aktivitas penyampaian keluhan/aspirasi dimana hal ini menunjukkan terjadinya peningkatan jumlah layanan yang diberikan; (2) sistem pelayanan pengiriman belum cukup kuat untuk menghadapi fluktuasi permintaan, dimana peningkatan jumlah pelayanan dibarengi juga dengan peningkatan ketidakpuasan yang terindikasi dari meningkatnya polaritas sentimen ‘Negatif’ selama pandemi. Pada periode tiga bulan kedua terlihat bahwa adaptasi dan perbaikan layanan hanya terjadi pada sebagian penyedia layanan saja; dan (3) terdapat beberapa perubahan topik keluhan/aspirasi yang dilihat pada rentang waktu sebelum pandemi, tiga bulan pertama pandemi, dan tiga bulan kedua pandemi. ......The Covid-19 pandemic and activity restriction policies in an effort to contain its spread have changed the ways of life and habits of many people around the world. Limited movement and community activities encourage them to rely on the shipping sector to meet their needs. This makes the delivery of goods an important part of meeting people's needs in the midst of a pandemic. The availability of official service accounts of each goods provider on Twitter social media as a forum for complaints and customer aspirations, enabling analysis of service needs trends and measuring customer satisfaction with these service sector services before and during the pandemic. Research on customer sentiment analysis towards a product or service has been done a lot, but the implementation of the lexicon–tfidf-svm time window approach integrating with LDA-Mallet topic modeling has not been done much, especially in the context of sentiment analysis in the freight forwarding sector. This research uses Twitter data obtained by the scrapping method from October 2019 - September 2020 on the five most popular delivery service providers in Indonesia. The lexicon approach is used in the formation of training data, where the classification model of this training data accurate rate of 89.21% is obtained which is then referred to predict the polarity of the overall sentiment of the data by the TFIDF-SVM statistical approach. This study provides the results that: (1) the Covid-19 pandemic through the parameters of the pandemic management policy significantly increased the activity of submitting complaints/aspirations, indicating an increase in the number of requests for services or services provided; (2) the delivery service system is not yet strong enough to deal with fluctuations in increased demand, where an increase in the number of services is accompanied by an increase in dissatisfaction, although it is not significant for all service providers. In the second three-months period, it appears that the process of adaptation and improvement of services only occurred in part of service providers; and (3) there were some changes in the topic of complaints/aspirations that were seen in the timeframe before the pandemic, the first three months of the pandemic, and the second three months of the pandemic.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Angga Pratama
Abstrak :
Pemerintah Indonesia mengeluarkan kebijakan untuk melakukan pemindahan ibu kota negara (IKN) dari Jakarta ke Kalimantan di tahun 2019. Hal tersebut menuai respons dari masyarakat, ada kelompok yang setuju dan ada yang tidak setuju. Opini dari masyarakat tentang pemindahan ibu kota banyak beredar melalu sosial media khususnya Twitter. Pemindahan ibu kota butuh proses panjang dan direncanakan dimulai di tahun 2024. Sampai saat ini sudah banyak kebijakan turunan dari pemerintah agar proses pemindahan ibu kota negara tetap berlangsung. Begitu juga dengan opini masyarakat di Twitter bermunculan menanggapi kebijakan tersebut. Sudah hampir 4 tahun sejak ditetapkan, sudah cukup banyak juga opini dari masyarakat tentang pemindahan IKN. Maka dari itu penelitian ini bertujuan untuk mengetahui sentimen masyarakat tentang pemindahan ibu kota negara beserta topik-topik yang menjadi perbincangannya. Penelitian ini dilakukan dengan cara mengumpulkan data dari Twitter sejak 2019 sampai 2022 tentang pemindahan ibu kota negara. Data yang dikumpulkan akan melewati serangkaian data preprosesing yang kemudian diklasifikasikan ke dalam sentimen positif, netral, dan negatif. Pemodelan sentimen dilakukan menggunakan lima model klasifikasi untuk mencari keakuratan terbaik, yaitu Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), dan Random Forest (RF). Masing-masing algoritma dijalankan dua kali dari 2 sampel yang tanpa melewati balancing, dan satunya lagi menggunakan oversampling. Pemodelan topik dilakukan menggunakan Latent Dirichlet Allocation (LDA). Kedua pemodelan ini digunakan untuk memvisualisasikan sentimen dan topik-topiknya ke dalam visualisasi time series. Pemodelan sentimen terbaik yang dihasilkan adalah RF dari sampel oversampling dengan nilai akurasi 82%. Pemodelan tersebut menghasilkan distribusi sentimen dengan sentimen positif mendominasi sebanyak 46.5%, sentimen netral sebanyak 31.6%, dan sentimen negatif sebanyak 21.9%. Hasil visualisasi time series menunjukkan bahwa sentimen positif tidak selalu mendominasi, namun hanya pada tahun 2022. Pemodelan topik menghasilkan 15 topik untuk sentimen positif, 11 topik untuk sentimen netral, dan 8 topik untuk sentimen negatif. Visualisasi topik time series memperlihatkan bahwa beberapa topik mendominasi perbincangan di Twitter, namun hanya pada bulan-bulan tertentu. Visualisasi time series dapat memberikan gambaran yang lebih komprehensif pada penelitian analisis sentimen dan pemodelan topik. ......Indonesian government issued a policy to move the national capital or ibu kota negara (IKN) from Jakarta to Kalimantan in 2019. This drew pros and cons from the public, there were groups who agreed and there were those who disagreed. Opinions from the public regarding the relocation of the capital city are widely circulated through social media, especially Twitter. Moving the capital city requires a long process and is planned to begin in 2024. Until now, there have been many derivative policies from the government so that the process of moving the national capital continues. Likewise, public opinion has sprung up ont Twitter in response to this policy. It's been almost 4 years since it was established, so there's been quite a lot of opinion from the public about the transfer of the IKN. Therefore this study aims to determine public sentimen about the relocation of the national capital along with the topics of discussion. This research is conducted by collecting data from Twitter from 2019 to 2022 regarding the relocation of the national capital. The data collected will go through a series of pre-processing data which are then classified into positive, neutral and negative sentimens. Sentimen modeling is carried out using five classification models to find the best accuracy, namely Naïve Bayes (NB), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). Each algorithm is run twice from 2 samples without going through balancing, and the other uses oversampling. Topic modeling is done using Latent Dirichlet Allocation (LDA). These two models are used to visualize sentimen and topics into a time series visualization. The best sentimen modeling produced is RF from oversampling samples with an accuracy value of 82%. This modeling produces a sentimen distribution with positive sentimen dominating by 46.5%, neutral sentimen by 31.6%, and negative sentimen by 21.9%. The results of the time series visualization show that positive sentimen does not always dominate, but only in 2022. The topic modeling produces 15 topics for positive sentimen, 11 topics for neutral sentimen, and 8 topics for negative sentimen. The time series topic visualization shows that several topics dominate the conversation on Twitter, but only in certain months. Time series visualization can provide a more comprehensive picture of sentimen analysis research and topic modeling.
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Riko Wijayanto
Abstrak :
Perkembangan teknologi informasi dan komunikasi (TIK) yang pesat menuntut inovasi dalam pengembangan aplikasi juga berkembang cepat. Aplikasi Tokopedia Seller merupakan salah satu aplikasi utama milik PT Tokopedia yang diperuntukkan bagi penjual dalam melakukan kegiatan operasional penjualan produk. Aplikasi yang baru diluncurkan di Android ini tergolong aplikasi perintis dan memerlukan banyak masukan dari pengguna, salah satunya dari Google Play Store. Akan tetapi, banyaknya ulasan yang masuk dan beragamnya opini, mengakibatkan proses analisis sentimen dan aspek ulasan menjadi lambat dan banyak terlewat. Oleh karena itu, perlu dilakukan suatu penelitian yang mengusulkan sistem otomatis untuk melakukan analisis sentimen berbasis aspek. Tujuan dari usulan sistem otomatis ini adalah untuk memudahkan proses analisis ulasan pengguna. Adapun data ulasan yang digunakan sebagai masukan eksperimen bersumber dari Google Play Store sejumlah 6.221 data berlabel dari Juli – September 2021. Penelitian ini menunjukkan bahwa algoritma Support Vector Machine (SVM) yang dipadukan dengan SMOTE menghasilkan performa yang paling baik dibandingkan dengan CNN dan Logistic Regression dengan accuracy 54%, precision 48%, dan recall 52% untuk mengklasifikan sentimen. Selaras dengan analisis sentimen, SVM dengan SMOTE juga menghasilkan performa yang lebih baik dengan accuracy 40%, precision 41%, dan recall 40%. Kondisi data ulasan yang cenderung singkat yakni kurang dari 10 kata, mengakibatkan performa klasifikasi kurang optimal. ......The rapid development of information and communication technology (ICT) requires innovation in the field of application development. The Tokopedia Seller application is one of the main applications owned by PT Tokopedia which develops for sellers in carrying out product sales operational activities. It was just launched on Android, and it is classified as a pioneering application and requires a lot of input from users, one of which is from the Google Play Store. However, due to a lot of reviews came in, it makes the process of sentiment analysis and aspect review being slow and many being missed. Therefore, it is necessary to conduct a study that proposes a automatic system to perform aspect-based sentiment analysis. The purpose of this automated system proposal is to simplify the process of analyzing user reviews. The review of the data used as experimental input sourced from the Google Play Store with a total of 6,221 data labeled from July – September 2021. This study shows that the Support Vector Machine (SVM) algorithm combined with SMOTE produces the best performance compared to CNN and Logistic Regression with 54% accuracy, 48% precision, and 52% recall for classifying sentiments. In line with sentiment analysis, SVM with SMOTE also produces better performance with 40% accuracy, 41% precision, and 40% recall. The condition of the short review data is less than 10 words, resulting in a less than optimal classification performance.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Anindito Izdihardian Wibisono
Abstrak :
Pada tahun 2020, nilai customer satisfaction index (CSI) PT XYZ yang mempresentasikan kepuasan konsumen XYZ berjumlah 83.9. Angka ini gagal mencapai target PT XYZ di tahun tersebut yaitu 87, dan turun dari tahun sebelumnya yaitu 86,5 di tahun 2019. Berdasarkan pengambilan data, diketahui bahwa XYZ mengelola aduan konsumen hanya melalui Twitter. Dari ribuan tweet yang diterima akun resmi customer care PT XYZ (@XYZCares) tiap bulan di Twitter, diperkirakan hanya 1-2% yang dideteksi sebagai aduan dengan proses pengawasan manual. Penelitian ini merancang solusi dua langkah berupa implementasi social media listening dalam bentuk sentiment analysis dan topic modelling, untuk mengetahui isu dalam tweet aduan kepada XYZ. Dataset berupa kumpulan tweet yang menyebutkan @XYZCares pada kurun waktu 1 Januari 2020 - 31 Desember 2020. Data di-scrape dari Twitter menggunakan script Python. Hasil evaluasi secara cross-validation menunjukkan akurasi rerata sentiment analysis dengan algoritme SVM lebih akurat (77%) untuk kasus ini dibandingkan algoritme RF (75%). Untuk task pemodelan topik, algoritme LDA menghasilkan klaster topik sejumlah 4 dengan rerata TPC sebesar 80%. Diketahui bahwa topik yang dominan adalah isu korupsi dan suap di badan PT XYZ. Dengan mempertimbangkan penemuan tersebut, saran yang dapat diberikan berdasarkan penelitian ini adalah memberhentikan staf yang diduga terlibat dalam isu-isu tersebut, serta menerapkan good corporate governance berupa aspek pengawasan dan pencegahan korupsi. ......The customer satisfaction index (CSI) for the year 2020 is calculated at 83.9. This value fails to reach the company’s target for the year at 87 and is lower than the CSI value for 2019 at 86.5. Data acquired from the company shows that consumer complaints are accepted and processed only through Twitter. It is estimated that of the thousands of tweets processed by PT XYZ’s official customer care account (@XYZCares) each month, only 1-2% of the tweets are considered complaints based on manual searching and classification. This research proposes a two-step solution by implementing social media listening in the form of sentiment analysis and topic modelling, to detect the most frequent issues addressed to XYZ. The dataset consists of tweets created from January 1st, 2020, to December 31st, 2020 which mentioned @XYZCares. The tweets were scraped from Twitter using Python scripts. The results of cross-validation show that for the task of sentiment analysis, SVM is a more accurate algorithm on average (77%) compared to Random Forest (75%). For the following task of topic modelling, the LDA algorithm model produced 4 topic clusters with an average TPC of 80%. The most dominant topic detected relate to allegations of bribery and corruption within PT XYZ. Taking these finds into consideration, this research suggests that PT XYZ immediately dismiss all staff implicated in the aforementioned cases, as well as implementing good corporate governance in the form of tighter supervision and prevention of corrupt dealings.
Depok: Fakultas Ilmu Komputer Universita Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ruchi Intan Tantra
Abstrak :
Kondisi pandemi saat ini membuat proses dan kegiatan belajar mengajar di Indonesia harus dilakukan secara daring menggunakan media digital. Proses pembelajaran secara daring ini berlangsung pada skala yang memang belum pernah terukur dan teruji sebelumnya. Kesenjangan akses pendidikan pun terjadi karena tidak setiap daerah di indonesia memiliki sarana dan prasarana serta pengetahuan akan teknologi yang memadai untuk keberlangsungan proses pembelajaran secara daring. Analisis sentimen terhadap pembelajan daring melalui twitter dapat membantu pemerintah dalam hal mengevaluasi kebijakan dan memperbaiki kualitas kebijakan-kebijakan yang tengah diterapkan saat ini. Desain penelitian yang digunakan pada penelitian ini adalah Experimental research, dimana analisis sentimen yang dilakukan pada penelitian ini menggunakan dua metode berbeda, yaitu metode deep learning (CNN) dan metode tradisional (naïve bayes). Klasifikasi sentimen dibagi menjadi 3 kelas yaitu negatif, positif, dan netral. Selain itu model juga dibangun untuk mendeteksi tweets yang bersifat tidak relevan terhadap konteks penelitian terhadap sentimen pembelajaran daring. Hasil analisis sentimen yang dibangun menggunakan model CNN yang memiliki akurasi 63,34%. Sedangkan model yang dibangun menggunakan metode naïve bayes memiliki akurasi 63%. Hasil Analisis sentimen masyarakat dari bulan april hingga oktober 2020, menunjukkan sentimen masyarakat yang cenderung negatif dibandingkan positif dan netral. Pemodelan topik dibangun menggunakan metode Latent Dirichlet Allocation (LDA) untuk menemukan isu dan topik yang menjadi perhatian masyarakat di sosial media twitter. Topik negatif yang didapatkan dari sentimen negatif terhadap pembelajaran daring antara lain berisi keluhan siswa mengenai tugas yang menumpuk, jaringan dan koneksi internet yang tidak stabil, dan keinginan untuk menjalani proses pembelajaran secara offline kembali. Sedangkan topik positif didapatkan dari sentimen positif terhadap pembelajaran daring yang secara garis besar berisi ungkapan kesenangan dan syukur atas kebijakan pemberian subsidi kuota internet gratis yang diberikan pemerintah untuk pelajar maupun mahasiswa. ......The current pandemic condition makes several school and universities in Indonesia implements teaching and learning activities form distance or online using digital platform. This online learning process takes place on a scale that has never been measured and tested before. The disparity in access to education also occurs because not every region in Indonesia has adequate facilities, infrastructure, and technological knowledge for the continuity of the online learning process. Sentiment analysis on twitter towards the online learning, could assist the government in evaluating policies and improving the quality of policies currently being implemented. The research design used in this study is experimental research, where the sentiment analysis uses two different methods, namely the deep learning method (CNN) and the traditional method (naïve Bayes). Sentiment classification is divided into 3 classes, namely negative, positive, and neutral. In addition, a model was also built to detect tweets that are irrelevant to the context of the research on online learning sentiment. The results of the sentiment analysis, were built using the CNN model, has an accuracy of 63.34%. Meanwhile, the model built using the naïve Bayes method has an accuracy of 63%. The results of the analysis of public sentiment from April to October 2020, on online learning process, show sentiments that tend to be negative compared to positive and neutral. Topic modeling was built using the Latent Dirichlet Allocation (LDA) method to find issues and public concern on twitter. Negative topics obtained from negative sentiment towards online learning described as following: student complaints about piling up tasks, unstable network and internet connections, and the desire to undergo the offline learning process again. Meanwhile, positive topics, were obtained from positive sentiments towards online learning, mostly contained expressions of pleasure towards the government which has providing free internet quota subsidies for students.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Arman
Abstrak :
ABSTRAK
Ekstraksi topik merupakan tugas utama dalam penambangan teks sebagai upaya mengeluarkan informasi yang terpendam dalam teks secara heuristik. Proses ini dilakukan lewat pemodelan topik yakni sebuah proses mengidentifikasi topik- topik yang ada dalam sebuah objek teks atau menurunkan pola-pola tersembunyi dalam sebuah korpus teks. Dalam penelitian ini pemodelan topik diaplikasikan pada data teks berbahasa Indonesia menggunakan modul program bernama Gensim dalam bahasa pemrograman Python. Dataset terdiri dari 93 dokumen berita daring Kompas dengan beragam klasifikasi. Jumlah topik optimal yang diperoleh diuji menggunakan machine learning clustering k-means. Dalam proses penelitian ini ternyata diperlukan suatu mekanisma umpanbalik manual untuk mereduksi noise agar diperoleh pemodelan topik yang lebih baik. Hasil uji memperlihatkan teknik Latent Dirichlet Allocation LDA yang telah ditingkatkan / dimodifikasi LDA as LSI memiliki koherensi topik yang jauh lebih baik dibanding teknik LDA saja dalam penelitian ini: 0.94 dibanding 0.34 . Koherensi yang tinggi mengindikasikan bahwa topik hasil pemodelan ini merupakan topik yang dapat dijelaskan dengan sedikit label.
ABSTRACT
Topic extraction is main task in text mining as an effort to dig buried information within text heuristically. This process is done through topic modeling, a process to identify topics within text object or to derive hidden patterns in a text corpus. In this research, topic modeling is applied to Indonesian language texts using Gensim module in Python programming language. The dataset consists of 93 online news documents from Indonesian national newspaper, Kompas, with several different classifications. The identified optimum number of topics k is visualized using clustering machine learning k means. In the process of this research turned out to need a mechanism of manual feedback for noise reduction in order to get better topic modeling. The test results show that enhanced modified Latent Dirichlet Allocation LDA as LSI has a much better topic coherence than LDA technique alone in this study 0.94 compared to 0.34 . High coherence indicates that topics resulting from this topic modeling is a topic that can be explained with few labels.
2017
T47943
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratih Wulandari
Abstrak :
Pemerintah meluncurkan aplikasi pelacakan kontak bernama aplikasi PeduliLindungi untuk menghentikan penyebaran COVID-19. Namun aplikasi ini hanya memiliki 55 juta atau hanya sekitar 20% dari jumlah penduduk Indonesia. Jumlah tersebut dinilai kurang untuk membantu mengatasi COVID-19. Setidaknya diperlukan 60% dari populasi yang menggunakan aplikasi pelacakan kontak sehingga penggunaan aplikasi pelacakan kontak menjadi efektif. Kualitas layanan merupakan faktor pengaruh dominan terhadap niat adopsi pengguna. Rendahnya kualitas layanan suatu aplikasi dapat mempengaruhi keinginan masyarakat untuk menggunakan aplikasi. Penelitian ini bertujuan untuk mengukur kualitas layanan aplikasi pelacakan kontak berdasarkan ulasan pengguna. Penelitian ini menggunakan metode pemodelan topik untuk memperoleh dimensi kualitas layanan serta analisis sentimen untuk mengukur kualitas layanan. Penelitian ini terdiri dari (1) pengumpulan ulasan pengguna aplikasi PeduliLindungi, (2) pra-pemrosesan dari data ulasan yang sudah diekstrak, (3) mengklasifikasikan ulasan ke topik/ dimensi kualitas layanan, (4) mengukur skor kualitas layanan setiap dimensi kualitas layanan, dan (5) mengevaluasi total skor untuk kualitas layanan dari aplikasi PeduliLindungi. Penelitian ini menghasilkan beberapa temuan. Pertama, dari berbagai dimensi kualitas layanan diketahui bahwa dimensi system efficiency, functional benefit, system availability, dan emotional benefit menjadi faktor penting oleh pengguna aplikasi pelacakan kontak. Skor kualitas layanan pada setiap dimensi adalah 66.5% untuk dimensi system efficiency, 54.4% untuk dimensi functional benefit, 51.5% untuk dimensi system availability, dan 46.2% untuk dimensi emotional benefit. Skor kualitas layanan aplikasi PeduliLindungi secara keseluruhan adalah 40.6%. ......The government has launched a contact tracing application called the PeduliLindungi application to stop the spread of COVID-19. However, this application only has 55 million or only about 20% of Indonesia's population. This amount is considered insufficient to help overcome COVID-19. At least 60% of the population is required to use contact tracing applications for the use of contact tracing applications to be effective. Service quality is the dominant influence factor on user adoption intention. Service quality level can affect people's desire to use the application. This study aims to measure the service quality of contact tracing applications based on user reviews. This study uses the topic modeling method to obtain service quality dimensions and sentiment analysis to measure service quality. This research consists of (1) collecting user reviews of PeduliLindungi, (2) pre-processing the extracted review data, (3) classifying reviews into topics/service quality dimensions, (4) measuring service quality scores for each service quality dimension, and (5) evaluate the total score for the service quality of the PeduliLindungi application. This research produced several findings. First, from various service quality dimensions, it is known that the service quality dimensions of a contact tracing application are system efficiency, functional benefit, system availability, and emotional benefit are important factors for contact tracing application users. The service quality score on each dimension is 66.5% for the system efficiency dimension, 54.4% for the functional benefit dimension, 51.5% for the system availability dimension, and 46.2% for the emotional benefit dimension. The overall PeduliLindungi service quality score is 40.6%.
2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2   >>