Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Charlie Tangoputra
"Dekomposisi spektrum merupakan salah satu attribut seismik yang menggunakan domain frekuensi dalam analisanya. Metode ini sangat berguna untuk mendeteksi lapisan tipis dengan ketebalan sekitar ¼ λ dimana pada ketebalan tersebut terjadi efek tuning. Metode ini juga dapat digunakan untuk mendeteksi patahan, channel (sungai), dan hidrokarbon. Untuk menggunakan metode ini dibutuhkan data seismik dalam domain waktu yang dengan menggunakan persamaan Short Time Fourier Transform (STFT), akan diubah ke dalam domain frekuensi.
Hasil akhirnya berupa peta struktur dalam domain frekuensi. Metode ini akan diaplikasikan pada data seismik yang telah mengalami tahap processing pada Lapangan X seluas 10 km x 10 km di daerah Cekungan Sunda. Dari data sumur permboran yang berupa data log, diperoleh 5 sand yang memiliki ketebalan yang berbeda-beda dan akan dianalisis penyebarannya dengan menggunakan metode ini. Setelah mengalami tahap interpretasi, data seismik akan diubah ke dalam domain frekuensi dengan Short Time Fourier Transform. Hasil yang diperoleh berupa penampang seismik secara lateral dalam domain frekuensi antara 5-65 Hz yang menunjukkan lapisan sand yang ketebalannya mendekati efek tuning dapat terdeteksi penyebarannya, sedangkan untuk lapisan sand yang ketebalannya di bawah resolusi seismik, pola penyebarannya tidak terlihat."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2007
S28896
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Muhammad Ziddan Hidayatullah
"Metode Common Reflection Surface (CRS) Stack merupakan metode stack yang lebih baru dari metode konvensional atau Common Mid Point (CMP) Stack. Kedua metode ini digunakan untuk mendapatkan penampang bawah permukaan yang sesuai dengan kondisi lapangan. Operator yang digunakan pada metode CRS stack sangat berbeda dengan metode CMP stack. Pada metode konvensial dibutuhkan pembuatan model kecepatan dari proses analisis kecepatan untuk dapat melakukan koreksi NMO. Semakin tepat pemilihan kecepatan yang dilakukan maka semakin baik penampang bawah permukaan yang dihasilkan. Pada metode CRS stack, atribut yang digunakan lebih sesuai dengan keadaan lokal dari reflektor. Atribut ini berupa sudut datang gelombang normal (α), jari-jari kelengkungan gelombang Normal Incidence Point (RNIP) dan jari-jari kelengkungan gelombang normal (RN). Ketiga atribut ini dapat di ekstrak dengan melakukan penentuan dip dan luas apertur. Penggunaan atribut lokal ini menjadikan metode ini dapat melakukan imaging yang lebih baik pada reflektor yang memiliki kemiringan tajam dibandingkan metode konvensional. Parameter luas apertur dapat memperbanyak jumlah trace yang akan di stack pada metode CRS stack sehingga dapat meningkatkan rasio S/N daripada metode konvensional dikarenakan proses stack pada metode konvensional dilakukan hanya dengan beberapa gather CMP. Pada pengolahan data seismik laut ini, dilakukan proses geometri, sorting, filtering, trace editing dan dekonvolusi untuk mengkondisikan data sebelum masuk pada tahapan stacking. Metode CMP stack dimulai dengan melakukan velocity picking pada penampang semblance untuk mendapatkan model kecepatan yang menjadi syarat dalam melakukan stacking konvensional. Untuk metode CRS stack, dilakukan variasi pada parameter maksimum dip, dip increament dan lebar apertur agar menghasilkan penampang bawah permukaan yang paling sesuai. Hasil dari penelitian ini memperlihatkan bahwa metode CRS stack dapat melakukan imaging subsurface lebih baik dibandingkan metode konvensional, terutama dalam aspek kemenerusan reflektor, meningkatnya rasio S/N, imaging reflektor dalam, dan dapat menangani reflektor yang memiliki kemiringan atau dip yang curam.

The Common Reflection Surface (CRS) Stack method is a newer stack method than the conventional method or the Common Mid Point (CMP) Stack. Both methods are used to obtain a subsurface section that is suitable for field conditions. The operators used in the CRS stack method are very different from the CMP stack method. In the conventional method, it is necessary to create a velocity model from the velocity analysis process to be able to apply NMO corrections. The more precise the selection of velocity, the better the resulting subsurface cross-section. In the CRS stack method, the attributes used are more in line with the local state of the reflector. These attributes are the emergence angle (α), the radius of curvature of the Normal Incidence Point (RNIP), and the radius of curvature of the normal wave (RN). These three attributes can be extracted by determining the dip and aperture width. The use of this local attribute makes this method able to perform better imaging on reflectors that have a steep dip than conventional methods. The aperture area parameter can increase the number of traces that will be stacked on the CRS stack method so that it can increase the S/N ratio than the conventional method because the stacking process in the conventional method is carried out only with a few CMP gathers. In this marine seismic data processing, geometry, sorting, filtering, trace editing, and deconvolution processes are carried out to condition the data before entering the stacking stage. The CMP stack method starts with velocity picking on the semblance cross-section to obtain a velocity model that is a requirement for conventional stacking. For the CRS stack method, variations are carried out on the parameters of maximum dip, dip increment, and aperture width in order to produce the most suitable subsurface section. The results of this study show that the CRS stack method can perform subsurface imaging better than conventional methods, especially in terms of reflector continuity, increased S/N ratio, deep reflector imaging, and can handle reflectors that have steep dip."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Jahrudin
"ABSTRAK
Pemodelan Inversi 3D struktur bawah permukaan berdasarkan data anomali gaya berat dan dan 2D anomali magnetik dilakukan untuk mengidentifikasi keberadaan potensi hidrokarbon di daerah ldquo;X rdquo;, dimana pada daerah penelitian terdapat struktur up dome yang mengindikasikan beberapa kemungkinan, diantaranya intrusi batuan, carbonate bulid up dan juga mud diapir. Model inversi 3D data anomali gaya berat dan magnetik telah dikoreksi dengan 2 dua penampang seismik yang ada pada daerah penelitian. Model inversi 3D dilakuan pada data anomali residual pada model gaya berat dan 2D pada anomali magnetik. Hasil pemodelan inversi 3D data anomali gaya berat menunjukan bahwa puncak up dome berada pada kedalaman sekitar 800 meter dari permukaan daerah penelitian, hasil ini sesuai dengan analisis spektrum dan kedalaman pada penampang seismik, adapun nilai densitas dari tubuh up dome tersebut bernilai sekitar 2,78 g/cm3. Sedangkan pada anomali magnetik yang telah dilakukan, struktur tersebut mengindikasikan merupakan batuan intrusi dengan anomali suceptibilitas sekitar 7.4 SI, yang menunjukan batuan beku.

ABSTRACT
3D inversion modeling of subsurface based on gravity anomaly data and 2D magnetik anomaly data used for identifcation hydrocarbon potential in ldquo x rdquo . Where in the study area there are up dome structures that indicate some possibilities, including igneous rock intrusion, carbonate bulid up and also mud diapir. 3D inversion modeling of gravity and magnetic anomaly data correlated to two sesimic section which avilable in study location. 3D inversion model is performed on the residual anomaly data on the gravity model and 2D in the magnetic anomaly. The result of 3D inversion modeling of gravity anomaly data shows that the peak up dome is at a depth of about 800 meters from the surface of the research area, this result corresponds to spectrum analysis and depth on the seismic cross section, while the density value of the up dome body is approximately 2.78 g cm3. While on the magnetic anomaly that has been done, structure of the dome indicates an intrusion structure with suceptibility anomaly approximately 7.4 SI, show the structure of igneous rock."
2018
T51598
UI - Tesis Membership  Universitas Indonesia Library