Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Diego Octaria
"Setiap proses pembelajaran memerlukan suatu evaluasi berupa ujian, begitu pula dengan e-learning. Pada proses e-learning jenis ujian yang banyak digunakan adalah jenis ujian pilihan ganda dan isian singkat. Alasannya adalah kemudahan dalam proses penilaian, komputer yang menjadi komponen penting dalam proses e-learning lebih mudah dalam melakukan penilaian ujian pilihan ganda dan isian singkat secara akurat karena jawaban yang ada harus sama baik pilihan maupun kata-katanya, dibandingkan dengan melakukan penilaian jenis ujian esai yang lebih kearah pemahaman bukan hafalan. Padahal jenis ujian pilihan ganda dan isian singkat memiliki banyak kekurangan bila dibandingkan dengan jenis ujian esai. Hal inilah yang mendasari lahirnya penilaian jawaban esai secara otomatis untuk mempersingkat pemeriksaan jawaban esai.
Ada banyak metode yang telah dikembangkan untuk penilai jawaban esai secara otomatis, salah satunya adalah Latent Semantic Analysis (LSA). Metode ini mempunyai ciri khas hanya mementingkan kata-kata kunci yang terkandung dalam sebuah kalimat tanpa memperhatikan karakteristik linguistiknya. Pada LSA, kata-kata direpresentasikan dalam sebuah matriks semantik dan kemudian diolah secara matematis menggunakan teknik aljabar linier Singular Value Decomposition (SVD). Implementasi pembobotan pada sistem penilaian esay otomatis dilakukan dengan menggunakan bahasa php, pada percobaan menggunakan jawaban esay dari quiz jaringan komputer.
Hasil ujicoba menunjukkan hal-hal yang mempengaruhi kecepatan proses aplikasi adalah banyaknya jawaban mahasiswa dan banyaknya user yang mengakses aplikasi. Dari percobaan juga menunjukkan bahwa skema yang paling mendekati dengan human rater adalah skema 4 yaitu dengan pembobotan lokal jawaban mahasiswa untuk Square Root dan pembobotan dosen Binary dan tidak menggunakan pembobotan global.

Every learning process needs an evaluation in the form of test. At elearning process the test type many used is multiple choice and short answer test type. Its reason is amenity in course of assessment, the computer become the important component in course of e-learning easier in doing assessment of multiple choice and short anwer test in accurate because the answer have to be same exactly, compared to do assessment test of essay type more toward understanding and not memorizing. Though multiple choice and short answer test type have many insuffiencies if compared to the test type esai. These matters constitute the creation of automatically assessment of answer esai to take a short cut inspection of essay answer.
There are many methods which have been developed for the automatically essay assessor, one of them is Latent Semantic Analysis (LSA). This Method has the unique method only making account of the key words implied in a sentence regardless of his linguistics characteristic. In LSA, words represented in a semantic matrix and then mathematicaly proceed to usely linear algebra technique Singular Value Decomposition (SVD). Wight implementation at automatically esay assessment system is done by using language php, In experiment the esay answer are from quiz computer network.
Result of experiment show the things influence speed of application process is the number of student answers and to the number of user accessing application. Of attempt is also indicate that the scheme very come near with human rater is scheme of 4 that is with local wight [of] student answer to Square Root and lecturer wight Binary and don't use any global wight.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40589
UI - Skripsi Open  Universitas Indonesia Library
cover
Michael Wijaya
"Skripsi ini membahas penerapan Convolutional Neural Network dalam merancang Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar. Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar merupakan perkembangan dari Sistem Penilaian Esai Otomatis atau Simple-O yang telah dikembangkan sebelumnya oleh Departemen Teknik Elektro UI. Tujuan dari dikembangkannya Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar ini agar dapat menilai sebuah gambar secara otomatis sehingga dapat mempercepat proses penilaian. Rancangan yang dibuat dalam penelitian ini akan memanfaatkan machine learning untuk memprediksi nilai dari gambar yang diuji. Pembelajaran akan dilakukan dengan menggunakan dataset yang memiliki label mulai dari nilai "1" sampai "10". Untuk mendapatkan informasi fitur dari gambar, digunakan algoritma Convolutional Neural Network dimana Neural network ini termasuk ke dalam algoritma Deep Learning. Pada sistem ini sebagian besar bahasa pemrograman yang digunakan adalah Python.

This thesis discusses the implementation of Convolutional Neural Network in designing an automated essay grading system in which the essay answer is in the form of an image. This automated essay grading system is based on the Department of Electrical Engineering in University of Indonesia's research called Simple-O. The purpose of this automated essay grading system to be developed is that the images can be graded automatically and accordingly so it will make the grading process more efficient. The design made in this proposal will utilize machine learning to predict the grade for the images inputted. The learning process will be done using a labeled data set from grade "1" to "10". Feature extraction process will be done using Convolutional Neural Network, which is considered a deep learning algorithm. This system will be programmed in Python."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Sanjaya
"Pada skripsi ini dikembangkan sistem dengan basis bahasa pemrograman Java untuk menilai esai dalam bahasa Indonesia menggunakan algoritma yang lebih efisien dan optimal. Algoritma ini terdiri dari 4 tahap. Pertama adalah Latent Semantic Analysis (LSA) yang digunakan untuk memperoleh dan menyimpulkan hubungan kontekstual dari arti kata suatu teks. Kedua, Single Value Decomposition SVD untuk memperoleh variasi penyebaran dari hubungan tersebut. SVD mengidentifikasi dimana variasi muncul paling banyak, sehingga memungkinkan untuk mencari pendekatan yang terbaik pada data asli menggunakan dimensi yang lebih kecil. Ketiga, Latent Semantic Indexing LSI yaitu metode pengindeksan dan pengambilan untuk mengidentifikasi pola didalam hubungan antara term dan konsep yang dimiliki didalam koleksi teks yang tidak terstruktur sehingga memperoleh vektor yang merepresentasi teks tersebut. Terakhir, Cosine Similarity Measurement CSM untuk memperoleh nilai kemiripan antara teks dengan dokumen referensi.
Untuk mengatasi permasalahan tata bahasa dan kosa kata pada esai, dalam karya ini diajukan teknik koreksi otomatis untuk memeriksa kata dalam pustaka kata untuk penyetaraan kata dengan arti yang serupa ataupun kata yang tidak memiliki arti spesifik. Kemudian, algoritma jarak Jaro-Winkler digunakan untuk memeriksa kesalahan kata yang disebabkan secara tidak sengaja. Dengan jarak Jaro-Winkler, kita dapat menentukan apakah 2 buah kata dapat dikatakan serupa. Hal ini sangat penting saat memeriksa dokumen yang berisi kesalahan penulisan, karena dapat mempengaruhi hasil LSA. Dengan sistem ini, nilai yang diperoleh serupa dengan nilai berdasarkan human-rater. Dengan pustaka kata yang terdiri dari 116 kata sinonim dan 2014 kata tugas, akurasi yang dihasilkan adalah 85.082 13.423.

In this thesis, a Java based system for grading essays in Indonesian language using a more efficient and optimal algorithm is developed. This algorithm consisted of 4 stage. The first stage is Latent Semantic Analysis LSA , which is used to obtain and conclude the contextual relation of words meaning in a text. The second stage uses Single Value Decomposition SVD to obtain scatter variance from the relations. SVD identifies where variances appear at most, therefore is enabled to find the best approach to the original data using reduced dimensions. The third stage is Latent Semantic Indexing LSI which is an indexing and retrieval method to identifies patterns in relation between terms and concepts contained in unstructured text collection and results with a vector representing the text. The last stage is Cosine Similarity Measurement CSM to obtain similarity value from the text and answer document.
To resolve problems stemmed from grammar and vocabulary, in this work we propose an auto correction technique to check a word from word library for equalization of word with same or no specific meaning. Then, Jaro Winkler distance algorithm is used to check word errors caused by accident when typing. With the distance, we can determine whether two strings of word are similar. This is extremely important when scanning text with typos, as it will affect the result from LSA. Using this system, the value obtained is similar to the value obtained from human rater. With word library consisting of 116 words for synonym check and 204 function words, the resulting accuracy is 85.082 13.423.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69656
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andira Rozawati
"Pada skripsi ini telah dirancang penambahan algoritma menggunakan sistem Support Vector Machine atau SVM untuk meningkatkan akurasi sistem Simple-O yang berbasis LSA. Akurasi dari sistem Simple-O saat ini masing kurang mendekati nilai penilaian manusia. Simple-O merupakan suatu sistem penilaian ujian esai menggunakan algortima Latent Sematic Analysis yang dikembangkan oleh Departemen Teknik Elektro Universitas Indonesia. Untuk menjalankan algoritma SVM atau Support Vector Machine digunakan input yang berupa nilai slice ,pad, dan fnorm yang didapatkan dari hasil keluaran sistem Simple-O. SVM akan membagi klasifikasi nilai hasil keluaran Simple-O menjadi enam kelas dan menjadi dua kelas. SVM menghasilkan akurasi 45,8 untuk klasifikasi nilai tipe enam kelas dan 90,4 untuk klasifikasi tipe dua kelas.

In this thesis, an addition of new algorithm using Support Vector Machine has been designed to increanse the accuracy of Sistem Penilaian Esai Otomatis Simple O based on Lantent Sematic Analysis. The accuracy of Simple O is less accurate if compared to the value of human rater. Simple O it self is an application to grade an essay writing exam using Latent Sematic Analysis algorithm that has been developed in Departement of Electrical Engineering Universitas Indonesia. SVM or Suppor Vector Machine used the output of Simple O system, slice, pad and fnorm, as inputs. SVM will divide output data from Simple O system into six class and two class. The accuracy of SVM is 45,8 for six class classification and 90,4 for two class classification."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67433
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Prayuda Putra
"Skripsi ini membahas rancangan dan pengembangan sistem penilaian esai otomatis untuk ujian Bahasa Jepang dengan bentuk isian singkat/esai. Sistem dirancang dengan model hybrid MLP (Multilayer Perceptron) dengan Particle Swarm Optimization. Sistem ditulis dalam bahasa pemrograman Python. Penilaian otomatis dilakukan dengan membandingkan jawaban mahasiswa dan jawaban dosen berdasarkan jarak kemiripan menggunakan Manhattan Distance. Model Hybrid MLP akan digunakan untuk menghasilkan vektor jawaban agar dapat dibandingkan dan dinilai. Dari variasi model yang diuji, variasi yang terbukti memiliki performa terbaik adalah variasi dengan model MLP yang dilatih secara backpropagation dengan optimizer Adam dengan learning rate sebesar 0.000001, fungsi loss categorical-crossentropy, dan dilatih selama 50 epoch. Model mendapatkan tingkat persentase eror sebesar 21.85% untuk rata-rata nilai prediksi dibandingkan dengan nilai yang diberikan oleh dosen.

This thesis discusses and explore the designs and development of Automatic Essay Grading System using combination of Multilayer Perceptron with Particle Swarm Optimization. The program is being developed with Python programming language. The system compares the matrix vector of the student’s answer with the key answer using Manhattan Distance. Out of all the variations that are tested, the model that is proven to be the most stable is the MLP model that are trained with Backpropagation with loss function crosscategorical-crossentropy and Adam optimizer with learning rate of 0.000001. The model achieves an error percentage of 21.85% for the average grade predicted compared to the actual grade."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurjannah Cintya Adiningsih
"Skripsi ini membahas tentang Sistem penilaian esai Otomatis (SIMPLE-O) untuk ujian Bahasa Jepang dengan Bidirectional LSTM dan Manhattan Distance. Dalam penggunaan Algoritma RNN menggunakan arsitektur Bidirectional LSTM. SIMPLE-O merupakan sistem yang sedang dikembangkan oleh Departemen Teknik Elektro UI yang digunakan untk menilai esai secara otomatis. Sistem berjalan menggunakan model Bidirectional LSTM, diukur dengan Manhattan Distance serta terdapat metric evaluasi yang terdiri dari Accuracy, Recall, Precision, F1-Measure. Dalam pengolahan sistem dilakukan secara otomatis menggunakan tensorflow. Pengujian yang dilakukan pada sistem yang dibangun terdapat 3 pengujian yaitu : pengujian terhadap epoch, optimizer dan word2vec. Untuk epoch dilakukan terhadap 3 epoch yaitu 20, 5 dan 10. Dari masing – masing epoch dijalankan sebanyak 5 kali. Hasil tertinggi yang didapatkan pada epoch ada pada epoch 20 yaitu 99.02%, untuk hasil pengujian optimizer menggunkan SGD atau stochastic gradient descent dan word2vec sebesar 500.

This thesis discusses the Automatic essay scoring system (SIMPLE-O) for Japanese language exams with Bidirectional LSTM and Manhattan Distance. In the use of the RNN Algorithm, the Bidirectional LSTM architecture is used. SIMPLE-O is a system being developed by the Department of Electrical Engineering UI which is used to automatically assess essays. The system runs using the Bi-LSTM model, measured by Manhattan Distance and there is an evaluation metric consisting of Accuracy, Recall, Precision, F1-Measure. In the system processing is done automatically using tensorflow. Tests carried out on the system built have 3 tests, namely: testing the epoch, optimizer and word2vec. For epoch, it is done for 3 epochs, namely 20, 5 and 10. From each epoch, it is run 5 times. The highest result obtained on epoch is at epoch 20, which is 99.02%, for the optimizer test results using SGD or stochastic gradient descent and word2vec of 500."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library