Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Dini Maghfirra
"Penelitian ini membahas masalah penjadwalan job shop. Pada sistem ini akan dilakukan kegiatan pemuatan barang ke dalam kontainer ekspor dimana waktu kedatangan dari kendaraan pembawa barangnya adalah bervariasi atau dinamis. Penjadwalan suatu kegiatan merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk masalah ini. Metode penelitian yang digunakan adalah salah satu dari metode meta-heuristik, yaitu algoritma differential evolution (DE). Prinsip algoritma DE sesuai dengan analogi evolusi biologi, yaitu terdiri dari proses inisialisasi populasi, proses mutasi, proses pindah silang, dan proses seleksi. Algoritma ini memiliki beberapa keunggulan, yaitu konsepnya sederhana, mudah diaplikasikan, cepat dalam menghasilkan solusi, dan tangguh. Fungsi tujuan dari permasalahan ini ialah meminimumkan total biaya keterlambatan seluruh job. Penjadwalan yang diperoleh melalui algoritma differential evolution pada proses kegiatan pemuatan barang ekspor di perusahaan third party logistics dengan studi kasus PT.X menghasilkan total biaya lembur seluruh job sebesar Rp.8.244.000. Jadi, usulan jadwal menghasilkan penurunan total biaya keterlambatan sebesar 9% dibandingkan jadwal perusahaan.

This research presents job shop scheduling. This system will imply for stuffing activity where the arrival time of truck is dynamic. Production scheduling is a complex problem so that appropriated method to produces the optimal solution of it is needed. Method of this research is one of metaheuristic algorithms, differential evolution (DE) algorithm. The principle of DE algorithm is based on analogy of biological evolution that consists of population initiation process, mutation process, crossover process, and selection process. This algorithm has some strengths because of its simply structure, ease to use, speed, and robustness. The objective function in this problem is to minimize total of tardiness costs of all jobs. The schedule that is obtained from differential evolution algorithm produces in stuffing process of PT. X as a Third Party Logistics company, the total of overtime costs are 8.244.000 rupiah, Thus, new schedule produces reduction of total of tardiness costs about 9% compared with schedule of company."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26174
UI - Tesis Open  Universitas Indonesia Library
cover
Cecep Muntako
"Penelitian ini membahas masalah penjadwalan job shop pada suatu perusahaan tertentu. Permasalahan job shop merupakan permasalahan yang sudah umum, akan tetapi pada penelitian ini ada keunikan dimana ada pengulangan proses dari job tertentu yang harus dikerjakan pada mesin tertentu sebelumnya. Sebagai akibatnya ?ditambahkan? mesin dummy untuk membantu mempermudah penyelesaian masalah ini, penambahan mesin mana menjadikan uniknya persoalan job shop. Sebagai model job shop digunakan 10 jobs dengan 85 pesanan dan 6 mesin yang berbeda, ditambah dengan 2 mesin dummy. Masalah penjadwalan dalam job shop ini diselesaikan dengan menggunakan metode algoritma differential evolution (DE) yang meminimalkan total biaya produksi. Penjadwalan dengan metode algoritma DE memberikan solusi yang cepat. Hasil dari penjadwalan dapat menghemat 0.19% total biaya produksi, juga makespan mengalami perbaikan 24% terhadap jadwal lama. Dengan demikian perusahaan bisa meningkatkan jumlah pesanan.

This study presents a job shop scheduling problem on a specific company. Job shop is a common problem, but in this study, there is a uniqueness of the job shop involving a repetition process of operation on certain jobs. As a result, dummy machine is ?added? to ease the problem. The model used 10 jobs, 85 orders and 6 different machines with 2 additional dummy machines. Differential evolution (DE) algorithm method is used to solve the problem, which minimizes the total cost of production. Scheduling with DE algorithm provides a quick solution. The results save 0.19% of total production costs, and improve makespan 24% compared to old scheduling. With the proposed method the company can increase the numbers of orders."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27588
UI - Tesis Open  Universitas Indonesia Library
cover
Andre Sugioko
"Penjadwalan job shop dengan kriteria biaya keterlambatan merupakan permasalahan yang jarang digunakan dalam penelitian job shop. Umumnya penjadwalan job shop diselesaikan dengan menggunakan metode metaheuristik, salah satu metode metaheuristik yang populer dibicarakan adalah algoritma Bee Colony. Algoritma Bee Colony merupakan algoritma yang tidak memiliki metode untuk lepas dari local optimum, seperti yang dinyatakan pada penelitian Chong (Chong, et al. 2005), maka penelitian ini akan melakukan modifikasi terhadap algoritma Bee Colony dengan menggunakan tabu list, untuk meningkatkan perfroma pencarian solusi dan waktu komputasi untuk permasalahan penjadwalan job shop dengan kriteria biaya keterlambatan.
Hasil penelitian menunjukan bahwa algoritma Bee colony-Tabu memberikan perfroma yang serupa untuk kriteria biaya keterlambatan dan waktu komputasi terhadap algoritma Tabu Search dan lebih baik daripada algoritma Bee Colony dan Differentialial Evolution untuk kriteria biaya keterlambatan. Sedangkan untuk waktu komputasi algoritma Bee colony dengan Tabu List lebih unggul daripada algoritma Tabu Search dan Bee Colony, namun waktu komputasi algoritma Differentialial Evolution lebih unggul daripada algoritma Bee colony-Tabu, Tabu Search dan Bee Colony.

Job shop scheduling with tardiness cost is a problem that rarely exist in paper research. Generally, job shop scheduling solved using metaheuristik method, one of metaheuristik methods popular discussed in many paper are Bee Colony algorithm. Bee Colony Algorithm is an algorithm that does not have a method to escape from local optimum, as stated in the Chong?s research (Chong, et al. 2005), because of that this research will make modifications to the Bee Colony algorithm using the taboo list, to improve searching solution and computing time for job shop scheduling problems with late fees criteria.
The results showed that the Bee colony-Tabu algorithm gives perfromance similar to the Tabu Search algorithm and better than Bee Colony algorithm for late fees criteria and computation time, and Differentialial Evolution for the criteria for late fees. As for computational time Bee colony with Tabu List algorithm is superior to Tabu Search algorithm and the Bee Colony, but the computing time algorithm Differentialial Evolution algorithm is superior to Bee Colony-Tabu, Tabu Search and Bee Colony.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T30052
UI - Tesis Open  Universitas Indonesia Library
cover
Novanda Astian
"Penelitian ini membahas masalah penjadwalan job shop pada suatu perusahaan. Pada sistem ini akan dihasilkan sejumlah produk dalam beberapa jenis dengan rute yang dapat berbeda satu sama lain. Penjadwalan produksi merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk mendapatkan solusi yang optimal untuk masalah ini.
Metode penelitian yang digunakan adalah salah satu dari metode meta-heuristik, yaitu algoritma differential evolution (DE). Prinsip algoritma DE sesuai dengan analogi evolusi biologi, yaitu terdiri dari proses inisialisasi populasi, proses mutasi, proses pindah silang, dan proses seleksi. Algoritma ini memiliki beberapa keunggulan, yaitu konsepnya sederhana, mudah diaplikasikan, cepat dalam menghasilkan solusi, dan tangguh. Fungsi tujuan dari permasalahan ini ialah meminimumkan nilai makespan (waktu total penyelesaian keseluruhan job).
Penjadwalan yang diperoleh melalui algoritma differential evolution menghasilkan nilai makespan sebesar 3198 menit, sedangkan jadwal perusahaan menghasilkan 3209 menit. Jadi, dengan menggunakan algoritma differential evolution terjadi pengurangan total waktu proses seluruh job yaitu 11 menit. Dalam penelitian ini digunakan data waktu proses yang sama agar hasil perhitungan dapat lebih akurat terhadap fungsi tujuan yang diinginkan.

This research presents job shop scheduling at a company. This system yields large amount of different products with some different manufacture processes. Production scheduling is a complex problem so that appropriated method to produces the optimal solution of it is needed.
Method of this research is one of metaheuristic algorithms, differential evolution (DE) algorithm. The principle of DE algorithm is based on analogy of biological evolution that consists of population initiation process, mutation process, crossover process, and selection process. This algorithm has some strengths because of its simply structure, easy to use, speed, and robustness. The objective function in this problem is to minimize total of finish time process of all jobs.
The result of scheduling that is obtained from differential evolution algorithm produces total of finish time process is 3198 minutes, meanwhile the schedule of company produces 3209 minutes. So, there are some reducing time of total finish time process of all jobs as much as 11 minutes. In this research, we use same data in order to get more accurate calculation based on objective function.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52146
UI - Skripsi Open  Universitas Indonesia Library
cover
Rahadian Matris
"Penelitian ini membahas masalah penjadwalan job shop pada suatu perusahaan otomotif. Pada sistem ini akan dihasilkan sejumlah produk dalam beberapa jenis dengan rute yang dapat berbeda satu sama lain. Penjadwalan produksi merupakan suatu permasalahan yang kompleks sehingga dibutuhkan metode yang tepat untuk memperoleh solusi yang optimal untuk masalah ini.
Metode penelitian yang digunakan adalah salah satu dari metode meta-heuristik, yaitu algoritma differential evolution (DE). Prinsip algoritma DE sesuai dengan analogi evolusi biologi, yaitu terdiri dari proses inisialisasi populasi, proses mutasi, proses pindah silang dan proses seleksi. Algoritma ini memiliki beberapa keunggulan, yaitu konsepnya sederhana, mudah diaplikasikan, cepat dalam menghasilkan solusi, dan tangguh. Fungsi tujuan dari permasalahan ini adalah meminimumkan makespan.
Penjadwalan yang diperoleh melalui algoritma differential evolution menghasilkan makespan sebesar 286.432,4 detik, sedangkan jadwal perusahaan menghasilkan 313.325 detik. Jadi, usulan jadwal menghasilkan penurunan makespan sebesar 8,58 % dibandingkan jadwal perusahaan.

This research discusses job shop scheduling problems in the automotive company. This system yields large amount of different products with some different manufacture processes. Production scheduling is the complex problems so that approriated method to produces the optimal solution of it is needed.
Method of this research is one of meta-heuristic algorithms, differential evolution (DE) algorithm. The principle of DE algorithm is based on analogy of biology evolution that consists of population initiatilization process, mutation process, crossover process, and selection process. This algorithm has some strengths because of its simply structure, ease to use, speed, and robustness. The objective function in this problem is to minimize makespan.
This schedule that is obtained from differential evolution algorithm produces makespan of 286,432.4 seconds, meanwhile the schedule of company produces 313,325 seconds. Thus, new schedule produces reduction of makespan about 8.58% compare with schedule of company.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52015
UI - Skripsi Open  Universitas Indonesia Library