Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Billy Adhitya Ramadhan
"ABSTRAK
Hidrogen merupakan salah satu unsur yang melimpah dimuka bumi, hidrogen ditemukan bersenyawa dengan atom lain sehingga banyak terdapat di udara (seperti H2 dan NH2) maupun air (H2O), ketersediannya di kerak bumi sebesar 15,4%. Karena ketersediannya yang melimpah dan kemampuan menghasilkan sumber energi tanpa menghasilkan polusi udara dan air, maka hidrogen diproyeksikan sebagai sumber energi masa depan. Namun pemilihan material untuk alat penyimpanan hidrogen sangat penting karena hidrogen dalam fasa gas merupakan molekul yang reaktif sehingga membutuhkan penyimpanan dengan material yang tepat. Selain dari faktor keamanan, efektivitas adsorpsi hidrogen ke permukaan material juga menjadi fokusan utama. Oleh karena itu dipilihlah Grafena oksida, Grafena oksida adalah lembaran yang terbentuk dari lapisan tunggal Grafit oksida yang mudah untuk disintetis yang memiliki sifat elektoronik dan optik yang baik. Kelebihan menggunakan material Grafena oksida adalah harganya yang lebih murah dibanding Grafena murni dan tersedia dengan jumlah yang banyak. Gas yang dapat diserap material ini antara lain H2, CH4, CO2, N2, NH3, NO2, H2S, dan SO2. Riset yang dilakukan secara simulasi ini memungkinkan untuk menguji efektivitas adsorpsi dengan variasi temperatur dan tekanan yang lebih luas dan menggunakan biaya yang relatif lebih rendah dibandingkan dengan riset eksperimental. Maka riset yang dilakukan penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan adalah 77 K, 100 K, 200 K, 250 K, 295K dan tekanan memiliki variasi 1 bar, 5 bar, 10 bar, 20 bar, 40 bar dan 80 bar pada sistem yang dibuat konstan. Hasil yang didapat akan dibandingkan dengan literatur hasil riset secara ekperimental.

ABSTRACT
Hydrogen is one of the abundant elements on earth, hydrogen is found in compound with other atoms so that there are many in the air (such as H2 and NH2) and water (H2O), its availability in the earth's crust is 15.4%. Due to its abundant availability and ability to produce energy sources without producing air and water pollution, hydrogen is projected as a future energy source. But the selection of materials for hydrogen storage devices is very important because hydrogen in the gas phase is a reactive molecule that requires storage with the right material. Aside from safety factors, the effectiveness of hydrogen adsorption onto the surface of the material is also the main focus. Therefore graphene oxide was chosen, graphene oxide is a sheet formed from a single layer of graphite oxide which is easy to synthesize which has good electric and optical properties. The advantage of using graphene oxide material is that the price is cheaper than pure graphene and is available in large quantities. The gases that can be absorbed by this material include H2, CH4, CO2, N2, NH3, NO2, H2S, and SO2. Research conducted in this simulation makes it possible to test the effectiveness of adsorption with a wider variety of temperatures and pressures and uses a relatively lower cost compared to experimental research. Then the research conducted by the author uses the Molecular Dynamics Simulation method. The temperature variations used are 77 K, 100 K, 200 K, 250 K, 295 K, the pressure has a variation of 1 bar, 5 bar, 10 bar, 20 bar, 40 bar and 80 bar in a constant system. The results obtained will be compared with the research results experimentally."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ihsan Widyantoro
"Energi hidrogen memiliki potensial yang besar sebagai energi yang bersih untuk digunakan di masa depan. Penggunaan gas hidrogen sebagai energi saat ini masih memiliki kendala, yaitu dalam sistem distribusi dan penyimpanannya. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material Zeolit merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Riset secara eksperimental umumnya memerlukan biaya yang tinggi. Maka, diperlukan metode riset lain yang dapat menunjangnya. Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 4, 6, 8, dan 10 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada tekanan rendah dan temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada tekanan tinggi dan temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.

Hydrogen energy has great potential to become one of the clean energies of the future. The current use of hydrogen gas as an energy source still has problems, especially in the distribution and storage system. One solution to overcome these problems is to use the adsorption method. Zeolite material is considered to be a good material to be used as a storage medium for hydrogen gas. Experimental research generally still requires a fairly high cost. Therefore, we need another method that can support it. In this research, the author used the Molecular Dynamics Simulation method. The variation of temperature used in this simulation is 77, 100, 150, 200, 273, and 298 K with a variation of pressure at each temperature is 1, 2, 4, 6, 8, and 10 bar. Our simulation results are then compared with the results of experimental research conducted by other researchers. At low pressure and high temperature, the results of our simulation are close to the results of experimental research. But at high pressure and low temperature, the results of our simulation are significantly different from the results of experimental research."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zaky Rahmatullah
"

Gas Hidrogen memiliki potensial yang cukup baik untuk digunakan sebagai sumber energi yang bersih pada masa depan. Gas hidrogen yang digunakan sebagai energi saat ini masih memiliki kendala, dimana dalam sistem penyimpanan gas hirdrogen itu sendiri. Ada salah satu cara untuk mengatasinya dimana dengan menggunakan metode yang dinamakan adsorpsi. Material Grafit merupakan adalah material yang memiliki potensial yang digunakan sebagai material penyimpanan gas hidrogen. Pada riset secara eksperimental memerlukan biaya yang sangat tinggi. Sehingga, dibutuhkan metode riset lain yang melakukan riset tersebut. Pada riset yang dilakukan, penulis menggunakan metode simulasi salah satunya adalah metode Simulasi Dinamika Molekuler. Pada riset simulasi yang dilakukan adanya variasi temperatur adalah 77 K, 100 K, 150 K, 200 K, 273 K, dan 296 K dan variasi tekanan pada temperatur adalah pada 1 atm, 8 atm, 10 atm ,14 atm ,18 atm,  dan 20 atm. Kemudian hasil simulasi dibandingkan dengan hasil riset eksperimental yang telah dilakukan oleh peneliti sebelumnya.

 

 


Hydrogen gas has good potential to be used as a clean energy source in the future. Hydrogen gas that is used as energy at this time still has an administration, whereas in the hydrogen storage system itself. There is one way to overcome it where by using a method called adsorption. Graphite is a material that has the potential to be used as a hydrogen gas storage material. In this study, the cost of experiments is very high. Required, other research methods are needed that conduct the research. In the research conducted, the author uses simulation methods, one of which is the Molecular Dynamics Simulation method. In the simulation research conducted there are variations in temperature namely 77 K, 100 K, 150 K, 200 K, 273 K, and 296 K and variations in pressure at temperatures are 1 atm, 8 atm, 10 atm, 14 atm, 18 atm, and 20 atm. Then the results of the experiment are compared with the results of experimental studies that have been done by previous researchers.

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Era Restu Finalis
"Carbon nanotubes (CNT) merupakan material yang banyak menjadi obyek penelitian di bidang teknologi nano karena kegunaannya yang sangat aplikatif. Salah satu kegunaan CNT adalah sebagai media yang potensial untuk penyimpanan hidrogen. Penelitian ini mensintesis CNT menggunakan katalis Fe-Co-Mo/MgO dengan sumber karbon LPG dan melihat pengaruh komposisi katalis dan temperatur terhadap yield, diameter, morfologi, luas permukaan, volume pori serta cacat struktur yang sesuai untuk digunakan sebagai adsorben pada penyimpanan gas hidrogen.
Hasilnya diperoleh CNT jenis MWNT dengan pengaruh komposisi optimum ditunjukkan oleh komposisi 40-40-20 (%wt) dengan hasil CNT sebesar 0,45 gram dan yield 2,25 (g CNT/g katalis) serta diameter sekitar 27-54 nm. Temperatur yang menghasilkan yield tertinggi adalah T= 850-950 0C dengan yield sebesar 2,75 (g CNT/g katalis) dan adanya peningkatan temperatur dapat meningkatkan diameter luar CNT, menurunkan luas permukaan dan volume pori serta menurunkan cacat struktur CNT.

Carbon Nanotubes (CNT) is a material which has been widely used as an object of many researches in nano technology field because its applicative uses. One of CNT's uses is as a potential media for hydrogen storage. In this research, CNT is produced using Fe-Co-Mo/MgO catalyst and LPG as carbon source. The aim of this research is to see the effect of catalyst composition and synthesis temperature on yield, diameter, morphology, surface area, pore volume and structure defects which are suitable to be used as an adsorbent for hydrogen storage.
The result showed that the CNT product was MWNT structure and the optimum catalyst composition was represented by 40-40-20 (%wt) composition with the CNT product was 1,45 gram, carbon yield was 2,25 (g of CNT/g of catalyst) with the diameter about 27-54 nm. The synthesis temperature that produces the highest yield was at T= 850-950 0C with the carbon yield 2,75 (g of CNT/g of catalyst). The effect of improving synthesis temperature can increase the outer diameter of the CNT, decrease surface area, and pore volume as well as decrease the CNT structure defects.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45428
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Hanif Abdurrahman
"ABSTRAK

Hidrogen merupakan salah satu sumber energi masa depan karena bersifat ramah lingkungan. Namun dalam pengembangannya masih terdapat beberapa masalah dalam metode penyimpanannya. Pada beberapa penelitian, ditemukan bahwa material berbasis silikon merupakan salah satu kandidat yang baik sebagai media penyimpanan hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada silika amorf dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones. Pada simulasi ini temperatur yang digunakan yaitu 233, 253, 273 dan 293 K serta tekanan pada setiap temperatur bervariasi yaitu 1, 2, 5, 10 dan 15 atm. Simulasi ini berhasil menggambarkan dan mengindikasikan bahwa silika amorf memiliki kemampuan untuk menyimpan hidrogen yang cukup baik dimana temperatur dan tekanan mempengaruhi jumlah hidrogen yang teradsorpsi. Pengaruh temperatur yaitu pada temperatur yang lebih rendah (233 K), maka jumlah konsentrasi hidrogen yang terserap pada silika amorf akan semakin besar. Sementara pada temperatur yang lebih tinggi maka hasilnya akan menurun. Hasil adsorpsi terbaik terjadi pada tekanan yang lebih tinggi (15 atm) pada temperatur rendah (233 K) dengan konsentrasi hidrogen sebesar 0,048116%.


ABSTRACT
Hydrogen is one of the future source energy because it has environmentally friendly. However, there are still some problems in the storage method of hydrogen. In several studies, it was found that Silicon based material is a promising candidate as a hydrogen storage medium. In this study, the effect of various temperature and pressure to the adsorption of hydrogen on amorphous silica with molecular dynamics simulation using Lennard-Jones potential. In this simulation, the temperature that i used are 233, 253, 273 and 293 K with pressure at each temperature are 1, 2, 5, 10, and 15 atm. The simulations had successfully visualize and indicate that amorphous silica has a good hydrogen storage capability where temperature and pressure affect the amount of hydrogen adsorbed.. At low temperature (233 K), the hydrogen concentration are relatively high than at higher temperature. The best result of hydrogen capacity is 0,048116% that occurred at high pressure (15 atm) with low temperature (233 K) condition.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachri Munadi
"Industri energi dunia berkontribusi 87% terhadap peningkatan gas rumah kaca di dunia. Untuk mengurangi emisi gas rumah kaca di dunia, hidrogen merupakan alternatif sumber energi dengan densitas energi gravimetrik 120 MJ/kg dan densitas volumetric 0,0824 kg/m3. Tantangan utama hidrogen sebagai energi alternatif adalah densitas volumetriknya yang sanagt rendah, sehingga memerlukan teknologi penyimpanan hidrogen dengan densitas volumetrik yang lebih tinggi. Sistem penyimpanan hidrogen sangat penting dalam siklus supply-chain hidrogen, terutama dari segi keekonomiannya. Sistem penyimpanan hidrogen terdiri dari proses hidrogenasi, transportasi, dan dehidrogenasi. Pada penelitian ini dilakukan analisis tekno-ekonomi dari 5 jenis teknologi penyimpanan hidrogen: compressed hydrogen, liquid Hydrogen, liquid organic hydrogen carrier, metal hydride, and amonia. Penelitian ini menggunakan Aspen Hysys dalam process design, process modeling, dan equipment sizing. Biaya sistem (IDR/kg) ditentukan berdasarkan Capital Expenditure (CapEx) dan Operational Expenditure (OpEx) dari masing-masing proses hidrogenasi dan dehidrogenasi, serta biaya transportasi pada 2000 km. Hasil penelitian menunjukkan bahwa pembawa liquid organic hydrogen carrier memiliki biaya sistem terendah sebesar IDR 40.254/kg, diikuti metal hydride sebesar IDR 45.247/kg, compressed hydrogen sebesar IDR 54.926/kg, amonia sebesar IDR 165.434/kg, dan liquid hydrogen sebesar IDR 189.658/kg. Namun efisiensi penyimpanan liquid organic hydrogen carrier hanya bernilai 8,71%, metal hydride bernilai 7,66%, dan amonia bernilai 33,49%. Hasilnya menunjukkan bahwa baik LOHC ataupun metal hydride memiliki tingkat kematangan teknologi yang baik.

The world's energy industries contribute 87% to the increase in global greenhouse gases. To reduce global greenhouse gas emissions, hydrogen as clean energy is an alternative energy source with a gravimetric energy density of 120 MJ/kg and a volumetric density of 0.0824 kg/m3. The main challenge of hydrogen as an energy carrier is its low volumetric density, thus requiring hydrogen storage technology at higher volumetric densities. Hydrogen storage systems are crucial to the hydrogen supply chain process, especially in terms of its economics. The hydrogen storage system consists of hydrogenation, transportation, and dehydrogenation processes. This paper uses the techno-economic analysis of five types of hydrogen storage technologies: compressed hydrogen, liquid Hydrogen, liquid organic hydrogen carrier, metal hydride, and ammonia. Hysys was introduced to help process design, process modeling, and equipment sizing of each technology. System costs (IDR/kg) are determined based on projected Capital Expenditure (CapEx) and Operational expenditure (OpEx) of each hydrogenation and dehydrogenation process, as well as shipping transportation cost at 2000 km. The results show that liquid organic hydrogen carrier had the lowest system cost of IDR 40.254,65/kg, followed by metal hydride at IDR 45.247,35/kg, compressed hydrogen at IDR 54.926,27/kg, ammonia at IDR 165.434,6/kg, and liquid hydrogen at IDR 189.658,25/kg. However, the storage efficiency of liquid organic hydrogen carriers is only 8.71%, metal hydride 7,66%, and ammonia 33,49%. The results show that both LOHC and metal hydride have better technological maturity."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahman Hadi
"Gas Hidrogen memiliki manfaat sebagai bahan bakar yang bermanfaat untuk sumber energi masa depan karena menurunkan ketergantungan akan minyak bumi dan pengurangan polusi udara. Penyimpanan hidrogen adalah masalah utama yang harus ditaklukkan untuk keberhasilan implementasi teknologi sel bahan bakar dalam aplikasi transportasi dan ini merupakan tantangan ilmu material utama. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material reduced Graphene Oxide (rGO) merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada reduced Graphene Oxide (rGO) dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones.Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 5, 10, 15, 20, 40, 80. dan 100 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.

Hydrogen gas has benefits as a useful fuel for future energy sources because it reduces dependence on petroleum and reduces air pollution. Hydrogen storage is a major problem that must be conquered for the successful implementation of fuel cell technology in transportation applications and this is a major material science challenge. One solution to overcome these problems is to use the adsorption method. Reduced Graphene Oxide (rGO) material is a material that has the potential to be used as a storage medium for hydrogen gas. In this study, the authors wanted to see the effect of temperature and pressure on hydrogen adsorption on reduced Graphene Oxide (rGO) using molecular dynamics simulations using Lennard-Jones potential. In this research, the authors used the Molecular Dynamics Simulation method. Temperature variations used in this simulation are 77, 100, 150, 200, 273, and 298 K with variations in pressure at each temperature are 1, 2, 5, 10, 15, 20, 40, 80. and 100 bar. The simulation results are then compared with the results of experimental research conducted by other researchers. At high temperatures, the simulation results approach experimental research results. However, at low temperatures, the simulation results have a significant difference from experimental research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maya Lestari
"Boron triazin dengan doping lithium serta karbon nitride merupakan material modifikasi dari CNT, lebih baik dari massa zat maupun kemampuan mengadsorp hidrogen. Penelitian mengenai adsorpsi hidrogen oleh material nanostruktur seperti CNT yang dilakukan secara eksperimental serta simulasi memilki banyak kekurangan. Artificial Neural Network dimodelkan sebagai alat prediksi kapasitas adsorpsi hidrogen yang menjadi solusi kekurangan metode penelitian yang ada.
Tujuan penelitian ini mencari pengkonfigurasian terbaik untuk ANN sehingga dapat menjadi alat prediksi yang presisi dan teruji jalan cepat mendapatkan data adsorpsi hidrogen tanpa melakukan simulasi. Goal dari penelitian ini ialah mendukung percepatan pengimplementasian hidrogen sebagai renewable energy untuk kapal masa depan. Penelitian dilakukan dengan simulasi struktur nano pada ruang penyebaran hidrogen (VMD, Packmol, Lammps), pengolahan data banyak (Ms.Excel), dan training data (NN).
Pemodelan fungsi prediksi ANN pada adsorpsi Hidrogen oleh Boron triazin dengan doping Lithium menghasilkan konfigurasi nn terbaik yakni pada varian pemilihan pertama dengan neuron 10. Sementara untuk Material Triazin pada temperature 77 menghasilkan konfigurasi nn terbaik pada skala 100-1000, pemilihan pertama, neuron 10. Sedangkan pada temperature 233 konfigurasi nn terbaik ditunjukan pada 100-10000 dengan neuron yang sama yakni 10.

Boron triazine with lithium doping and carbon nitride is a material modification of the CNT, better than the mass of a substance as well as the ability adsorbing hydrogen. Research on hydrogen adsorption by nanostructured materials such as CNT conducted experimental and simulation has many shortcomings. Artificial Neural Network is modeled as predictors of hydrogen adsorption capacity of the solution to be no shortage of research methods.
The purpose of this study look for the best configuration to ANN that can be a predictor of precision and proven fast way to get hydrogen adsorption data without doing simulations. Goal of this study is to support the accelerated implementation of hydrogen as a renewable energy for future ships. The study was conducted with a simulation of nanostructures in space deployment of hydrogen (VMD, Packmol, Lammps), many data processing (Ms.Excel), and the training of data (NN).
ANN predictive modeling function on hydrogen adsorption by Boron doping triazine with Lithium produce the best nn configuration variant first election to the neuron 10. While for Material Triazines at temperatures of 77 to produce the best nn configuration on a scale of 100-1000, the first election, the neuron 10. Meanwhile, at temperatures of 233 nn configuration best shown in 100-10000 the same neurons that is 10.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S66479
UI - Skripsi Membership  Universitas Indonesia Library