Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Arum Ma`Rifatun Khikmah
Abstrak :
Sintesis Periodic Mesoporous Organosilica dengan jembatan biphenylene telah berhasil dilakukan menggunakan metode sol gel dengan kehadiran surfaktan sebagai template. Selanjutnya fungsionalisasi Bph-PMO dengan gugus amina telah berhasil dilakukan dengan dua langkah reaksi kimia yaitu reaksi nitrasi menggunakan HNO3 65%/H2SO4 96% dan reduksi menggunakan menggunakan SnCl2/HCl 37%. Hasil sintesis kemudian dikarakterisasi menggunakan FTIR, XRD, dan TEM EDX. Karakterisasi TEM mengkonfirmasi struktur material Bph-PMO memiliki struktur mesopori 2D hekasogonal dengan periodisitas molekuler, setelah difungsionalisasi dengan ukuran rata-rata diamater partikel sebesar 223.7 nm. Modifikasi permukaan pada NH2-Bph-PMO dengan nanopartikel perak telah dilakukan dengan metode impregnasi dan reduksi menggunakan AgNO3 sebagai prekursor perak dan NaBH4 sebagai agen pereduksi. Hasil karakterisasi XRD mengkonfirmasi keberadaan nanopartikel perak pada nilai 2θ = 38.1o, 44.2o, 64.5o dan 77,4o. Perhitungan besar ukuran kristal rata-rata dari nanopartikel perak dalam Ag/NH2-Bph-PMO adalah 8,05 nm berdasarkan persamaan Debye- Scherer. Kemampuan adsorpsi CO2 pada material Bph-PMO, NH2-Bph-PMO dan Ag/NH2-Bph-PMO ditentukan menggunakan metode titrimetri. Banyaknya CO2 yang teradsorpsi selama 15 menit dari masing masing material adalah 33.44, 8.392, dan 16.4 mmol. Reaksi karboksilasi fenilasetilena dengan CO2 dilakukan dengan variasi suhu (25oC, 50oC, dan 70oC). Hasil reaksi dianalisa menggunakan HPLC dan menunjukkan %konversi terbaik pada suhu 50oC yaitu 46.74%.
Synthesis of Biphenyl Periodic Mesoporous Organosilica (Bph-PMO) has been successfully carried out using the sol gel method in the presence of surfactants as a template. Furthermore, the functionalization of Bph-PMO with an amine group has been successfully carried out with two steps of a chemical reaction, nitration reaction (HNO3 65%/H2SO4 96%) and reduction (SnCl2/HCl 37%). Results of the synthesis were characterized using FTIR, XRD, and TEM EDX. TEM characterization confirmed that Bph-PMO material having a 2D hekasogonal mesoporous structure with molecular periodicity, after functionalized the material have average particle size of 223.7 nm. Surface modification of NH2-Bph-PMO with silver nanoparticles has been carried out by impregnation and reduction method using AgNO3 as a silver precursor and NaBH4 as a reducing agent. The result of XRD characterization confirmed the presence of silver nanoparticles at 2θ = 38.1o, 44.2o, 64.5o and 77.4o. Based of Debye-Scherer Calculation the average crystal size of silver nanoparticles in Ag/NH2-Bph-PMO is 8.05 nm. The capacity adsorption of CO2 on Bph-PMO, NH2-Bph-PMO and Ag/NH2-Bph-PMO materials was determined using the titrimetry method. The amount of CO2 adsorbed for 15 minutes from each material is 33.44, 8,392 and 16.4 mmol. The carboxylation reaction of phenyl acetylene with CO2 was carried out with variation of temperature (25oC, 50oC, and 70oC). The results of the reaction were analyzed using HPLC and showed the best conversion at 50oC at 46.74%.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Patrik Chandra
Abstrak :
Salah satu isu terbesar di bidang lingkungan adalah perubahan iklim yang diakibatkan oleh emisi gas CO2 yang terus mengalami peningkatan setiap tahunnya. Upaya yang dapat dilakukan untuk mengurangi emisi gas CO2 adalah dengan menangkapnya lalu mengubahnya menjadi bahan kimia yang lebih bernilai melalui reaksi kimiawi, salah satunya adalah reaksi hidrogenasi. Namun, dikarenakan sifat CO2 yang stabil, dibutuhkan katalis untuk menjalankan reaksi hidrogenasi CO2. Pada penelitian ini, material NiAg/NH2pr-Ph- PMO disintesis sebagai katalis sebagai kayauntuk digunakan sebagai katalis heterogen pada konversi CO2 menjadi bahan kimia yang bernilai tambah melalui reaksi hidrogenasi. NiAg/NH2pr-Ph-PMO yang disintesis dikarakterisasi menggunakan FTIR, SEM-EDX Mapping, TEM, BET-BJH, SAXS, dan XRD untuk melihat sifat fisika dan kimia serta membuktikan keberhasilan sintesisnya. Reaksi hidrogenasi CO2 dilakukan dalam reaktor unggun tetap dengan temperatur, rasio bimetal, dan rasio campuran gas yang bervariasi. Analisis XRD menunjukkan keberhasilan impregnasi NiAg bimetalik pada NH2pr-Ph-PMO. Hasil SEM-EDX Mapping menunjukkan persebaran logam nikel dan perak yang merata pada permukaan NH2pr-Ph-PMO. Karakterisasi TEM menunjukkan NiAg/NH2pr-Ph-PMO memiliki saluran pori yang membuktikan keberhasilan sintesis material mesopori. Berdasarkan hasil yang diperoleh, diketahui bahwa NiAg/NH2pr-Ph-PMO memiliki aktivitas katalitik yang lebih baik dibandingkan Ni/NH2pr-Ph- PMO, Ag/NH2pr-Ph-PMO, maupun katalis NiAg tanpa pendukung. Pada temperatur 225℃ dan rasio laju alir gas CO2:H2 sebesar 1:7, diperoleh persen konversi CO2 maksimum yaitu sebesar 39,12% dengan yield dan selektifitas terhadap formaldehid berturut-turut sebesar 28,1 mmol/g dan 70,59%. Uji reusabilitas menunjukkan bahwa setelah 4 siklus reaksi, katalis NiAg/NH2pr-Ph-PMO masih memiliki persen konversi CO2 di atas 35%. Nilai TOF yang diperoleh pada kondisi optimum adalah 62,98 h-1. .....Climate change that is caused by the always increasing carbon dioxide emission in atmosphere is one of the biggest issue in the environmental study. One way to solve that problem is through CO2 capture and utilization. CO2 can be converted into more valuable chemical product through many chemical reactions, in which hydrogenation is one of them. However, CO2 is a stable and inert molecule thus, a catalyst is needed to achieve a high percentage of its conversion. In this work, NiAg/NH2pr-Ph-PMO is synthesized to be applied as heterogeneous catalyst for CO2 hydrogenation. The catalyst is characterized using SEM- EDX Mapping, TEM, BET-BJH, XRD, SAXS and FTIR to evaluate its physical and chemical properties. BET-BJH analysis shows type IV isotherm for the synthesized NH2pr-Ph-PMO, meaning it can be classified as a mesoporous material. From the SEM-EDX Mapping result, both nickel and silver are found to be distributed evenly in the NH2pr-Ph-PMO surface. TEM images show that NiAg/NH2pr-Ph-PMO has mesoporous channel. Furthermore, the average particle size of NiAg/NH2pr-Ph-PMO is analyzed through small angle X-ray scattering and is found to be 44 nm. Catalytic CO2 hydrogenation is conducted in a fixed-bed reactor with variations of temperature and flow rate ratio between CO2 and H2 It is found that NiAg/NH2pr- Ph-PMO has a higher CO2 conversion percentage compared to Ni/NH2pr-Ph-PMO, Ag/NH2pr- Ph-PMO, and NiA without support. On the optimum condition, which is 225℃ and 1:7 flow rate ratio of CO2:H2 flow, the percentage of CO2 conversion using NiAg/NH2pr-Ph-PMO is 39.12% with formaldehyde yield and selectivity of 28.1 mmol/g and 70.59% respectively. The reusability test shows that after 4 cycles, NiAg/NH2pr-Ph-PMO is still able to convert more than 35% of CO2 which makes it a reusable catalyst for CO2 hydrogenation. The TOF value obtained at optimum condition is 62.98 h-1.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Pertiwi
Abstrak :
Karbondioksida merupakan gas rumah kaca yang menjadi salah satu faktor pemanasan global dan perubahan iklim secara drastis. Namun, di samping dampak negatif emisi gas CO2 secara alami maupun melalui hasil kegiatan antropogenik, CO2 dapat dimanfaatkan sebagai sumber C1 reaksi organik, salah satunya reaksi karboksilasi. Periodic Mesoporous Organosilica (PMO) merupakan material mesopori silika yang memiliki keunggulan, di antaranya memiliki ukuran pori cukup besar yang dapat memfasilitasi transfer massa dengan baik, luas permukaan besar yang memungkinkan banyak sisi katalitik, maupun integrasi dari spesi organik dan atom logam dalam kerangka PMO. Logam nikel merupakan logam yang secara luas digunakan dalam bidang katalisis, karena logam tersebut memiliki orbital d tidak terisi penuh, sehingga dapat membentuk ikatan kovalen koordinasi dan memudahkan proses pembentukan intermediet pada permukaan katalis. Pada penelitian ini, dilakukan sintesis PMO dengan prekursor 4,4’- bis(trietoksisilil)bifenil dan dilanjutkan dengan fungsionalisasi gugus amina melalui proses nitrasi dan aminasi. Selanjutnya, dilakukan imobilisasi kompleks Ni(acac)2 pada material Bph-PMO untuk digunakan sebagai katalis pada reaksi karboksilasi fenilasetilena dengan CO2. Analisis XRD menunjukkan bahwa fungsionalisasi gugus amina pada Bph-PMO tidak merubah komponen maupun struktur periodik pada Bph-PMO, begitu pula setelah nikel diimobilisasi pada Bph- PMO yang terfungsionalisasi gugus amina. Analisis FTIR Ni/NH2-Bph-PMO menunjukkan puncak serapan pada 1605 cm-1 yang mengindikasikan pembentukan ikatan C=N dari reaksi kondensasi Schiff antara gugus amina dengan C=O pada Ni(acac)2. Material Ni/NH2-Bph-PMO memiliki ukuran partikel rata-rata 420 nm, dengan pemuatan nikel 2,8% berdasarkan analisis SEM-EDX. Analisis TEM menunjukkan keberadaan struktur mesopori pada NH2-Bph-PMO. Ukuran diameter pori dan luas permukaan BET material Ni/NH2-Bph-PMO berturut-turut sebesar 3,16578 nm dan 490,742 m2/g. Uji katalitik material Ni/NH2-Bph-PMO pada karboksilasi fenilasetilena dengan CO2 dilakukan pada tiga variasi suhu, di mana kondisi optimum diperoleh pada suhu 25 °C, dengan konsentrasi produk fenil maleat 244,5899 ppm.
ABSTRACT
Carbon dioxide is a greenhouse gas that affecting global warming and produces climate change. However, aside from the negative effects of natural CO2 gas emissions and through anthropogenic activities, CO2 has been used as a source of C1 organic reactions, for example, carboxylation reaction. Periodic Mesoporous Organosilica (PMO) is a superior silica mesoporous material, which has a large pore to facilitate mass transfer, a large area that allows many catalytic sides, which also associated with organic species and metal atoms in PMO. This property supports PMO to be applied as a metal catalyst support. Nickel metal is a metal that is widely used in the catalysis field, because this metal has d orbitals and is not fully filled, so it can form covalent bonds and fasilitate process of making intermediates on the surface of the catalyst. In this study, PMO was synthesized with 4,4'-bis (triethoxysilyl) biphenyl precursor and continued with the functionalization of amine groups through nitration and amination process. Furthermore, immobilization of Ni(acac)2 complex was carried out on the Bph-PMO material to be used as a catalyst in the carboxylation reaction of phenylacetylene with CO2. Analysis of XRD shows that the functionalization of amine groups on Bph-PMO does not change the periodic structure of Bph-PMO, as well as after nickel immobilized on aminated Bph-PMO. Absorption peak at 1605 cm-1 of Ni/NH2- Bph-PMO revealed from FTIR analysis, indicating new C=N bond from Schiff condensation between amine group and C=O from Ni(acac)2. Ni/NH2-Bph-PMO material has an average particle size of 420 nm, with 2,8% nickel loading based on SEM-EDX analysis. Mesoporous structure of NH2-Bph-PMO has been proved by TEM analysis. The pore diameter size and BET surface area of Ni/NH2-Bph-PMO are 3,16578 nm and 490,742 m2/g, respectively. The catalytic test of Ni/NH2-Bph- PMO on phenylacetylene carboxylation with CO2 was carried out at three temperature variations, which shows that optimum condition was obtained at 25 °C, with a concentration of phenyl maleic product of 244,5899 ppm.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiqih Arafah Rakhman Kastari
Abstrak :
Tujuan dari penelitian ini adalah mensintesis dan meneliti kemampuan katalitik katalis berbasis material hibrid silika-organosilika terfungsionalisasi sulfonat dengan mereaksikan secara sol-gel, prekursor silika dengan prekursor Periodic Mesoporous Organosillica dan diaplikasikan sebagai katalis reaksi esterifikasi asam lemak bebas dengan gliserol. Material ini berhasil disintesis didukung dengan karakterisasi menggunakan Fourier transform infrared (FT–IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FESEM-Edx), X–ray diffraction (XRD), dan Surface Area Analyzer (SAA). Untuk meneliti kemampuan katalitik katalis ini, maka dibandingkan dengan kelima jenis katalis lain yaitu SBA-15, SBA-15-PrSO3H dengan tiga macam variasi, dan Ph-PMO-PrSO3H. Dalam membandingkan kemampuan katalitik keenam jenis katalis ini dilakukan reaksi esterifikasi dengan kondisi yang telah ditetapkan, yaitu pada suhu 200oC, waktu reaksi selama 120 menit dengan persen berat katalis sebesar 1%. Didapatkan nilai persen konversi asam terbaik dengan menggunakan material hibrid, dimana didapatkan persen konversi sebesar 34,37%. Kemudian, dengan menggunakan katalis hibrid diselidiki keadaan optimum reaksi (perbandingan molar reaktan, selang waktu dan persen jumlah katalis). Didapatkan kondisi optimum reaksi pada variabel rasio molar reaktan (gliserol: asam oleat) terbaik pada rasio (4:1) dengan yield 34,37%, variasi selang waktu 300 menit menghasilkan yield optimum sebesar 39,23% dan jumlah katalis sebesar 5% berat reaktan yang menghasilkan yield 86,53%. ......The purpose of this study was to synthesize and investigate the catalytic ability of a sulfonate functionalized silica-organosilica hybrid based catalyst by reacting sol-gel, silica precursors with Periodic Mesoporous Organosillica precursors and applied as a catalyst for the esterification of free fatty acids with glycerol. This material was successfully synthesized supported by characterization using Fourier transform infrared (FT–IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FESEM-Edx), X-ray diffraction (XRD), and Surface Area Analyzer (SAA). . To examine the catalytic ability of this catalyst, it was compared with five types of catalysts, namely SBA-15, SBA-15-PrSO3H with three variations, and Ph-PMO-PrSO3H. In comparing the catalytic ability, this type of catalyst was subjected to an esterification reaction with predetermined conditions, namely at a temperature of 200oC, a reaction time of 120 minutes with a catalyst percentage of 1%. The best acid conversion percentage value was obtained using a hybrid material, where the conversion percentage was 34.37%. Then, using a hybrid catalyst provides the optimal reaction state (molar reaction ratio, time lapse and percentage of catalyst). The optimum reaction conditions were obtained at the best reactant (glycerol: oleic acid) molar ratio variable at a ratio (4:1) with a yield of 34.37%, a variation of the time interval of 300 minutes produced an optimum yield of 39.23% and the amount of catalyst was 5% by weight. reactants which yield 86.53% yield.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library