Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Atika Hendryani
"Masalah kesehatan mental semakin menjadi perhatian utama dalam masyarakat saat ini, sehingga manajemen stres menjadi sangat penting untuk menjaga kesejahteraan. Berbagai teknologi untuk mendeteksi stres telah dikembangkan, salah satu metode yang menjanjikan adalah penggunaan imaging photoplethysmography (iPPG) yang diperoleh dari video wajah yang direkam menggunakan kamera konvensional. Penelitian ini bertujuan untuk meningkatkan akurasi klasifikasi stres dengan memanfaatkan sinyal iPPG berbasis kamera web. Dalam penelitian ini, diusulkan dua pendekatan baru pada tahap pra-pemrosesan untuk meningkatkan kualitas deteksi stres. Pendekatan pertama adalah pemilihan Region of Interest (ROI), yang berfokus pada empat area wajah: dahi, pipi kiri, pipi kanan, dan seluruh wajah. Pendekatan kedua adalah penerapan metode frame alignment untuk mengatasi artefak gerakan yang sering kali mempengaruhi kualitas sinyal. Untuk mendeteksi stres, digunakan teknik pembelajaran mesin sebagai metode klasifikasi, dengan parameter utama penanda stres berupa heart rate (HR) dan variabilitas detak jantung heart rate variability (HRV). Data yang digunakan dalam penelitian ini merupakan data primer yang diperoleh dari video wajah 80 peserta, dengan rentang usia 18 hingga 25 tahun. Tugas aritmatika digunakan sebagai pemicu stres, di mana peserta diminta menyelesaikan soal matematika. Proses pengambilan data dilakukan di laboratorium dengan kondisi pencahayaan sebesar 220 lux. Kamera web yang digunakan adalah kamera laptop dengan kecepatan 30 frame per detik (fps). Sebanyak 265 fitur yang berkaitan dengan stres berhasil diekstraksi dari video tersebut, dan data kemudian disegmentasi menggunakan validasi silang 5-fold. Untuk mengurangi noise akibat artefak gerakan, diterapkan metode frame alignment yang menunjukkan perbaikan signifikan dalam mengoreksi noise. Hasil penelitian menunjukkan adanya perbedaan signifikan dalam rata-rata HR antara kondisi stres dan non-stres. Pada parameter HRV, perubahan signifikan ditemukan pada frekuensi rendah Low-Frequency (LF), yang sering dikaitkan dengan respon stres. Beberapa algoritma pembelajaran mesin diuji untuk klasifikasi, dan memberikan hasil akurasi yang tinggi. Decision Tree memperoleh akurasi 0,955 dengan waktu proses 3,13 ms. K-Nearest Neighbors (KNN) akurasi 0,981 dengan waktu proses 2,54 ms, dan Logistic Regression mencapai akurasi 0,985 dengan waktu proses 4,181 ms. Algoritma lain seperti Naïve Bayes akurasi 0,97, waktu 2,659 ms, Support Vector Machine (SVM) akurasi 0,985, waktu 6,71 ms, Random Forest akurasi 0,958, waktu 27,07 ms, dan RBF SVM akurasi 0,985, waktu 9,637 ms juga dievaluasi. Di antara algoritma tersebut, Logistic Regression menunjukkan akurasi klasifikasi tertinggi sebesar 0,985 dengan waktu inferensi 4,181 ms, menjadikannya model yang paling efisien untuk deteksi stres. Metode deteksi stres yang dikembangkan berhasil mendeteksi stres menggunakan kamera RGB dengan mengatasi masalah artefak gerakan melalui frame alignment. Selain itu, pemilihan empat ROI wajah yang spesifik memberikan informasi stres yang lebih andal dibandingkan dengan penggunaan ROI seluruh wajah. Sistem ini merupakan langkah maju yang signifikan dalam deteksi stres non-invasif berbasis kamera web, dengan potensi aplikasi dalam manajemen kesehatan mental dan penilaian stres. Pengembangan di masa mendatang dapat mengeksplorasi peningkatan resolusi video untuk menghasilkan sinyal yang lebih presisi, serta penggabungan model pembelajaran mendalam untuk deteksi stres yang lebih akurat. Penerapan sistem ini pada kamera mobile juga dapat menjadi solusi yang lebih praktis untuk pemantauan stres secara real-time dalam kehidupan sehari-hari.

Mental health issues have increasingly become a major concern in today's society, making stress management crucial for maintaining well-being. Various technologies for stress detection have been developed, and one promising method is the use of imaging photoplethysmography (iPPG) obtained from facial videos recorded using conventional cameras. This study aims to improve the accuracy of stress classification by utilizing iPPG signals derived from webcam-based recordings. In this research, two novel approaches are proposed at the preprocessing stage to enhance stress detection quality. The first approach is the selection of Regions of Interest (ROI), focusing on four facial areas: the forehead, left cheek, right cheek, and the entire face. The second approach involves the application of frame alignment methods to address motion artifacts, which often affect signal quality. Machine learning techniques were employed as the classification method for stress detection, with key stress indicators including heart rate (HR) and heart rate variability (HRV). The data used in this study comprises primary data obtained from facial videos of 80 participants aged 18 to 25 years. Arithmetic tasks were employed as stressors, requiring participants to solve mathematical problems. Data collection was conducted in a laboratory under lighting conditions of 220 lux. The webcam used was a laptop camera operating at a speed of 30 frames per second (fps). A total of 265 stress-related features were successfully extracted from the videos, and the data was segmented using 5-fold cross-validation. To reduce noise caused by motion artifacts, a frame alignment method was applied, demonstrating significant improvement in noise correction. The results revealed significant differences in average HR between stressed and non-stressed conditions. For HRV parameters, significant changes were observed in Low-Frequency (LF) components, often associated with stress responses. Several machine learning algorithms were tested for classification, yielding high accuracy results. Decision Tree achieved an accuracy of 0.955 with a processing time of 3.13 ms, K-Nearest Neighbors (KNN) achieved 0.981 with 2.54 ms, and Logistic Regression reached 0.985 with 4.181 ms. Other algorithms such as Naïve Bayes (accuracy 0.97, time 2.659 ms), Support Vector Machine (SVM) (accuracy 0.985, time 6.71 ms), Random Forest (accuracy 0.958, time 27.07 ms), and RBF SVM (accuracy 0.985, time 9.637 ms) were also evaluated. Among these, Logistic Regression demonstrated the highest classification accuracy of 0.985 with an inference time of 4.181 ms, making it the most efficient model for stress detection. The developed stress detection method successfully detected stress using RGB cameras by addressing motion artifact issues through frame alignment. Additionally, selecting specific facial ROIs provided more reliable stress information compared to using the entire face as an ROI. This system represents a significant advancement in non-invasive webcam-based stress detection, with potential applications in mental health management and stress assessment. Future developments could explore higher video resolution to yield more precise signals and integrate deep learning models for more accurate stress detection. Implementing this system on mobile cameras could also offer a more practical solution for real-time stress monitoring in daily life."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Baihaqi Hamiz
"Hemoglobin adalah komponen darah yang penting untuk mengikat oksigen di paru paru dan mendistribusikannya ke seluruh tubuh. Metode invasif tidak memungkinkan pengukuran real-time dalam situasi darurat. Pengembangan metode noninvasif untuk pemeriksaan hemoglobin menghadapi tantangan dalam hal akurasi, ketepatan, dan keringkasan alat. Pada penelitian menggunakan sensor MAX30102 sebagai pembaca gelombang merah dan inframerah, OLED sebagai alat yang menampilkan hasil prediksi, dan Nvidia Jetson Nano sebagai processor. Alat juga dilengkapi dengan pembacaan detak jantung, SpO2, dan dua tombol untuk mengulang pembacaan dan mematikan alat. Pelatihan model dilakukan menggunakan dataset yang diperoleh dari riset sebelumnya, "Pengembangan Instrumentasi Pengukur Konsentrasi Hemoglobin Non-Invasif Berbasis Photoplethysmography dan Machine Learning" oleh Ester Vinia (2023). Setelah melakukan pelatihan pada lima jenis model (Dense Neural Network, Decision Tree, Support Vector, Gradient Boosting, dan Random Forest), didapatkan model dengan metode Dense Neural Network memiliki akurasi R2 sebesar 96%, loss MAE sebesar 0,2 dan MSE sebesar 0,11, metode Decision Tree memiliki akurasi R2 sebesar 90%, loss MAE sebesar 0,27 dan MSE sebesar 0,3, metode Support Vector memiliki akurasi R2 sebesar 17%, loss MAE sebesar 1,2 dan MSE sebesar 2,61, metode Gradient Boosting memiliki akurasi R2 sebesar 89%, loss MAE sebesar 0,43 dan MSE sebesar 0,3, dan metode Random Forest memiliki akurasi R2 sebesar 99%, loss MAE sebesar 0,05 dan MSE sebesar 0,02. Prototipe alat kemudian dibuat menggunakan pembelajaran mesin bermodel Random Forest Regressor. Model kemudian ditanam di Nvidia Jetson Nano sehingga alat dapat dioperasikan dengan efisien dan cepat. Pada pengujian alat, didapatkan nilai akurasi sebesar 93,27%.

Hemoglobin is a vital blood component responsible for binding oxygen in the lungs and distributing it throughout the body. Invasive methods do not allow real-time measurement in emergency situations. Developing noninvasive methods for hemoglobin examination faces challenges in accuracy, precision, and device compactness. In this research, a MAX30102 sensor was used for reading red and infrared waves, an OLED for displaying prediction results, and an Nvidia Jetson Nano as the processor. The device also includes heart rate and SpO2 readings, and two buttons for repeating readings and turning off the device. The model was trained using a dataset obtained from previous research, "Development of Non Invasive Hemoglobin Concentration Measurement Instrumentation Based on Photoplethysmography and Machine Learning" by Ester Vinia (2023). After training on five types of models (Dense Neural Network, Decision Tree, Support Vector, Gradient Boosting, and Random Forest), the Dense Neural Network model achieved an R2 accuracy of 96%, MAE loss of 0.2, and MSE loss of 0.11; the Decision Tree method achieved an R2 accuracy of 90%, MAE loss of 0.27, and MSE loss of 0.3; the Support Vector method achieved an R2 accuracy of 17%, MAE loss of 1.2, and MSE loss of 2.61; the Gradient Boosting method achieved an R2 accuracy of 89%, MAE loss of 0.43, and MSE loss of 0.3; and the Random Forest method achieved an R2 accuracy of 99%, MAE loss of 0.05, and MSE loss of 0.02. The device prototype was then developed using the Random Forest Regressor model. The model was embedded in the Nvidia Jetson Nano, allowing the device to operate efficiently and quickly. During testing, the device achieved an accuracy of 93.27%."
Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Dokumentasi  Universitas Indonesia Library
cover
Salsabila Aurellia
"Vital sign merupakan parameter fisiologis yang penting dalam melihat adanya gangguan pada tubuh seseorang. Maka dari itu kebutuhan peralatan dalam pemeriksaan vital sign sangat tinggi. Saat ini vital sign dapat diketahui dengan cara pemeriksaan non-contact. Pemeriksaan vital sign dengan non-contact dapat menggunakan Photoplethysmography (PPG). Saat ini PPG sendiri telah banyak dikembangkan agar dapat membaca keseluruhan vital sign seperti detak jantung, tekanan darah, dan juga konsenstrasi oksigen di dalam darah (SpO2). Pada penelitian ini dirancang pengembangan PPG dengan bantuan pencitraan dalam membaca vital sign. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari pengukuran langsung yang telah dirancang agar dapat diproses menjadi sinyal Imaging Photoplethysmography (IPPG) yang baik. Dataset terdiri dari 13 orang laki-laki dan 17 orang perempuan. Dataset yang didapatkan akan dibagi menjadi beberapa scene yang kemudian diproses dalam metode yang diusungkan yaitu Discrete Fourier Transform (DFT) dan Deep Learning yaitu Convolutional Neural Network (CNN). Hasil penelitian ini berupa nilai RMSE dan MAE dimana saat penggunaan DFT menghasilkan masing masing 3,39 dan 1,38 dan dengan metode CNN arsitektur PhysNet menghasilkan 8,2151 dan 2,5976 untuk detak jantung, 3,3311 dan 1,0534 untuk tekanan darah, serta 3,6044 dan 1,1398 untuk SpO2.

Vital sign is an important physiological parameter in seeing a disturbance in a person's body. Therefore the need for equipment in vital sign examination is very high. Currently vital signs can be identified with non-contact examination. Examination of vital signs with non-contact can use Photoplethysmography (PPG). Currently PPG itself has been developed a lot so that it can read all vital signs such as heart rate, blood pressure, and also the concentration of oxygen in the blood (SpO2). In this study, the development of PPG was designed with the help of imaging in reading vital signs. The dataset used in this study is a dataset derived from direct measurements that have been designed to be processed into a good Imaging Photoplethysmography (IPPG) signal. The dataset consists of 13 men and 17 women. The dataset obtained will be divided into several scenes which are then processed using the proposed method, namely the Discrete Fourier Transform (DFT) and Deep Learning, namely the Convolutional Neural Network (CNN). The results of this study are RMSE and MAE values where when using the DFT they produce 3.39 and 1.38 respectively and with the PhysNet architecture CNN method they produce 8.2151 and 2.5976 for heart rate, 3.3311 and 1.0534 for blood pressure , and 3.6044 and 1.1398 for SpO2."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pandi
"Pengolahan sinyal fisiologis, seperti Photoplethysmography (PPG), memerlukan penguatan dan filter dalam rentang 0,4 hingga 5 Hz. Derau dapat berasal dari berbagai sumber, termasuk gerakan otot, pernapasan, powerline interference, atau bahkan internal noise dari perangkat itu sendiri. Metodologi penelitian ini menggunakan perbandingan filter analog Butterworth 2nd-order, 4th-order dan 8th-order. Sinyal uji input berasal dari simulator SPO2 tipe MS100 Contect yaitu dengan parameter SPO2 diatur pada 96% 60 Beats Per Minute. Data dari simulator dibaca oleh sensor PPG standar, dan dirubah oleh internal Analog Digital Converter (ADC) pada Nucleo-F429ZI dan data ADC dikirim ke komputer menggunakan protokol UART. Data tersebut disimpan dalam format comma-separated values untuk berikutnya disimulasikan pada model desain filter dengan LTspice (Linear Technology Simulation Program with Integrated Circuit Emphasis). Hasil penelitian menunjukkan Signal-to-Noise-Ratio Butterworth 8th-order yang paling rendah yaitu -0,077 dB sedangkan 4th-Order dan 2nd-Order secara berurutan -0,085 dB dan -0,089 dB

The processing of physiological signals, such as Photoplethysmography (PPG), necessitates amplification and filtering within the range of 0,4 to 5 Hz. Noise can stem from various sources, including muscle movements, respiration, interference from electrical grids, or even internal noise from the device itself. The methodology employed in this research utilizes analog Butterworth filters of 2nd-order, 4th-order, and 8th-order for comparison. The input test signal originates from an MS100 Contect SPO2 simulator with SPO2 parameters set at 96% and 60 Beats Per Minute. Data from the simulator is acquired by a standard PPG sensor and converted by the internal Analog-Digital Converter (ADC) on the Nucleo-F429ZI. The ADC data is then transmitted to the computer using UART protocol. The data is stored in comma-separated values format for subsequent simulation in the filter design model using LTspice (Linear Technology Simulation Program with Integrated Circuit Emphasis).The research results indicate that the Signal-to-Noise Ratio of Butterworth 8th-order is the lowest at -0.077 dB, while the 4th Order and 2nd Order have values of -0.085 dB and -0.089 dB, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hendrana Tjahjadi
"ABSTRAK
Pulse oximeter telah mendapatkan penerimaan yang luas dalam komunitas medis untuk beberapa alasan. Sejak produksi pertamanya di awal tahun 1980- an dengan mengacu pada hukum Beer-Lambert, pulse oximeter telah diakui dan dipuji karena biaya operasionalnya rendah serta pengoperasiannya yang mudah. Kebanyakan peralatan pulse oximeter tidak membutuhkan komponen perangkat keras yang besar. Peneliti melakukan penelitian dengan tujuan membuat prototipe pulse oximeter genggam yang dilengkapi LCD layar sentuh berbasis Single Board Computer Raspberry Pi B+ yang dapat menampilkan besarnya kadar saturasi oksigen (SpO2), pulse rate (PR) dan photoplethysmography (PPG). Menggunakan perangkat lunak Qt berbasis LINUX sehingga menghasilkan Graphical User Interfaces (GUI) lebih informative. Penelitian ini merupakan penelitian laboratorium eksperimental melalui pendekatan kuantitatif dengan metode pengumpulan data menggunakan data primer. Peneliti berhasil membuat prototipe pulse oximeter genggam berbasis Raspberry Pi B+ yang dapat menampilkan saturasi oksigen (SpO2) dengan tingkat akurasi 2% dan pulse rate dengan tingkat akurasi 2 bpm serta dilengkapi dengan tampilan grafik photopletysmography.

ABSTRACT
Pulse oximeter has gained wide acceptance in the medical community for several reasons. Since its first production in the early 1980s with reference to the Beer- Lambert law, pulse oximeter has been recognized and praised for its low operational costs and easy operation. Most pulse oximeter equipment does not require large hardware components. Researchers conducted the research with the aim of making a prototype handheld pulse oximeter based Single Board Computer Raspberry Pi B + and equipped with an LCD touch screen which can display the amount of oxygen saturation levels (SpO2), pulse rate (PR) and photoplethysmography (PPG). Using Qt software based LINUX resulting Graphical User Interfaces (GUI) more informative. This research is an experimental laboratory through a quantitative approach to data collection methods using primary data. Researchers successfully produced a prototype handheld pulse oximeter based Raspberry Pi B + which can display oxygen saturation (SpO2) with 2% accuracy rate and pulse rate with accuracy 2 bpm which is equipped with a graphic display photopletysmography.
"
2015
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library