Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Hendrik Kurniawan
"ABSTRAK
Dengan mengfokuskan berkas pulsa laser karbon dioksida pada berbagai macam target pada tekanan rendah, akan terbentuk plasma yang unik. Dalam disertasi ini struktur dan dinamika dari plasma yang unik ini dapat diperoleh dengan mengembangkan metode pengamatan plasma yang baru yaitu pengukuran distribusi ruang dari intensitas emisi pada berbagai waktu tunda. Plasma ini terdiri atas daft bagian; pertama yaitu bagian kecil dari plasma (disebut plasma primer) yang memancarkan spektrum emisi kontinu hanya untuk beberapa seat diatas permukaan target. Bagian yang lain (plasma sekunder) mengembang sesuai waktu disekeliling plasma primer, memancarkan spektrum garis atomik yang sangat tajam dengan emisi latar belakang yang sangat rendah.
Juga ditunjukan bahwa emisi dari atom-atom yang terpancar keluar dari target membentuk struktur kulit (tipis), dan ionisasi dari atom-atom berlangsung lebih lambat dari pada eksitasi dari atom-atom netral. Laju pergeseran dari muka emisi adalah sebanding dengan waktu pangkat due per lima. Juga berhasil diamati bahwa titik dimana sinyal emisi mulal tampak adalah sama untuk berbagai macam target meskipun berbeda pada berat atomnya. Hasil ini mendukung model bahwa plasma sekunder dibentuk mengikuti prinsip gelombang kejut dengan plasma primer sebagai sumber energi awal.
Dengan memakal gas helium dan argon disekeliling target pada tekanan rendah, dua proses eksitasi yang berbeda terjadi pada saat pembentukan plasma sekunder. Proses eksitasi pertama disebabkan oleh mekanisma gelombang kejut, sedangkan eksitasi kedua disebabkan oleh tingkat energi metastabil pada gas mulia. Proses eksitasi kedua ini menyalurkan energi metastabil yang disimpan oleh gas mulia pada atom-atom yang dipancarkan oleh target meskipun lama setelah pulsa laser berakhir, sehingga menghasilkan intensitas emisi yang lebih tinggi di gas mulia dibandingkan di udara.
Temperatur tinggi pada plasma sekunder sebagai akibat dari kecepatan propagasi yang tinggi dari muka plasma menyebabkan plasma ini sangat cocok digunakan untuk mendeteksi atom-atom halogen yang biasanya sangat sukar diidentifikasi karena tingkat energinya yang sangat tinggi. Aplikasi analitis untuk mendeteksi unsur halogen pada contoh bubuk kimia maupun kalsium pada bahan makanan menunjukkan hubungan yang linter pada kurva kalibrasi. dalam metode Laser Microprobe Spectrochemical Analysis (LHSA) yang umum dipakai hingga saat ini untuk analisa spektrokimia, tidak terdapat hubungan yang tinier pada kurva kalibrasinya karena timbul penyarapan sendiri (self absorption) yang sangat kuat, .lumlah minimum yang dapat dideteksi untuk Cl adalah 5 ppm dan 10 ppm untuk Ca, yang mane Jauh lebih balk dibandingkan dengan metode Induction Couple Plasma (ICP) maupun metode lain. Hingga saat ini metode ICP adalah metode ter-balk yang banyak dipakal untuk analisa elemen-elemen pads bahan makanan. Metode kami akan dikembangkan menjadi metode analisa kuantitatif yang cepat, akurat dan. memiliki sensitivitas yang tinggi tidak Baja pada bahan makanan tetapi juga pada bahan biologi, geologi dan lain-lain.

ABSTRACT
A study has been conducted on the formation of the unique plasma generated by focusing a TEA CO2 laser onto various targets with low pressure surrounding gases. A new method of time-resolved measurement of spatial distribution of the plasma was carried out for analyzing the plasma structure and dynamics. The unique laser induced plasma consists of two distinct regions; the first is a small area of plasma (called primary plasma), which gives off intense continuous emission spectra for a short time just above the surface of the target. The other area (secondary plasma) expands with time around the primary plasma, emitting sharp atomic line spectra with negligibly low background signals.
It is clearly shown that emission due to the gushed atoms from the target form shell structure, and the ionization of the atoms proceeds at slower rate than the excitation of the neutral atoms. The displacement of the emission expansion is proportional to the two-fifths power of time. It has been also observed that the rising point in the time-resolved spatial distribution of the emission 1s the same regardless of the difference in atomic weight. These results support the model that the secondary plasma is excited by a shock wave with primary plasma serving as the initial explosion source.
By using helium and argon as a surrounding gases, two different excitation processes take place in farming the secondary plasma. The first excitation process is due to the shock wave mechanism, while the second process is due to the metastable state of the noble gases. It is believed that this second process transfers metastable energy to the vaporized atoms of the target for emission, even long after the laser bombardment ends, thus giving total emission intensity that is higher in the noble gases than yielding in air.
The high temperature generated in the secondary plasma as a result of its high propagating front speed has made it favorable for use in detecting atoms such as halogens which are usually very difficult to identify because of their high lying electronic energy level. Analytical application to the detection of halogen atoms in chemical powder and calcium in food material shows good linearity in the calibration curve. In the ordinary Laser Microprobe Spectra-chemical Analysis (LMSA), the calibration curve is not linear due to the strong self absorption. The detection limit of Cl, Ca is 5 ppm and 10 ppm respectively which is-better than ICP (50 ppm for Cl) and other methods. So far, ICP emission spectrometry has been used as the most convenient method for simultaneous multi elemental analysis of food materials. Our method will be developed as a rapid, high-precision, highly sensitive quantitative analytical method for not only food materials but also other biological and geological samples.
"
Depok: Universitas Indonesia, 1992
D177
UI - Disertasi Membership  Universitas Indonesia Library
cover
Abdul Rahman
"Laser Nd-YAG dengan energi 26 mj dan 53 mj, lebar pulsa 8ns di/Okla/can ke target (Cu) pada tekanan udara yang dikurangi. Peningkatan rasio sinyal latar belakang (S/B) dimungkinkan dengan kombinasi unik dari plasma yang dibatasi (confined plasma) dan teknik pencitraan (imaging technique). Dengan menggunakan teknik pencitraan, plasma primer (primary plasma) dan bagian tertentu dari plasma sekunder (secondary plasma) memberikan spektrum emisi yang kontinu dipisahkan dari bagian lain plasma sekunder. Dengan metode ini dapat diperoleh spektrum S/B yang tinggi meskipun menggunakan pengukuran waktu terintegrasi (time-integrated). Untuk menkonfirmasikan peran dari mekanisme gelombang kejut (shock-wave) dalam pembentukan plasma, titik fokus radiasi laser dimajukan 3 mm pada permakaan target dan ditemukan bahwa plasma sekunder melengkung ke bagian belakang target pada posisi yang berhubungan dengan area yang ditutupi ketika dilihat dari sisi plasma primer. Fenomena sangat mendukung eksistensi gelombang kejut."
Depok: Fakultas Teknik Universitas Indonesia, 1999
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Marpaung, Mangasi Alion
"A comprehensive study has been made on the dynamical process-taking place in the laser-plasma generation induced by a TEA CO2 laser bombardment on metal target and non-metal target from low to high pressures surrounding gas. In the case of metal target, pure zinc plate was used as a target and bombarded with 400-mJ-laser pulse energy. Dynamical characterization of plasma expansion and excitation were examined in detail both for target atomic emission (Zn I 481.0 nm) and gas atomic emission (He 1 587.6 nm) by using a unique time-resolved spatial distribution measurement and conventional emission spectroscopic detection method. The results showed that the plasma expands and develops with time. The mechanism of plasma generation can be classified into three cases depending on .the surrounding gas pressures; target shock wave plasma in the pressure range between 2 Ton and 20 Ton, coupling shock wave plasma in the pressure range between 50 Torr and 200 Torr and gas break down shock wave plasma in the pressure range between 200 Ton and I atm. In all cases in the laser-plasma generation under TEA CO2 laser bombardment on metal target, shock wave process always plays important role for exciting the target atoms and gas molecules.
In the case of non-metal target, a museum glass was used as a target and bombarded with a 400 nd laser pulse energy. By using the conventional emission spectroscopic detection method, namely temporally and spatially integrated and time-resolved spatially integrated of plasma emission, it was shown that the plasma mainly consists of target atomic emission. Only weak gas atomic emission intensity could be observed even at I atm of surrounding gas pressure. These results indicate that the gas breakdown is not a major process responsible to the plasma formation even at high pressure surrounding gas. Shock wave process was considered as an important role in this plasma formation. By the use of shadowgraph technique to detect the density jump signal due to the shock wave front involving a He-Ne laser as a probe light, simultaneous detection of the shock wave front and the emission front was successfully implemented. The result showed that at the initial stages of plasma expansion shock wave front and emission front coincide and move together with time. At the later stages of plasma expansion the two fronts became separate with the emission front left behind the shock wave front. These results are completely coinciding with the shock wave plasma model. Unfortunately, in this experiment we succeed to detect the density jump signal only for high pressure surrounding gas, above 100 Torr. At the pressures lower than 100 Torr the density jump signal was very weak and it is difficult to distinguish with the noise including in the signal.
The other important experimental results that support the shock wave plasma model were also obtained in this experiment, namely the coincidence of emission front regardless of their atomic weight and sub-target effect. By using lead glass as a sample, which contain Pb, Si, and Ca, it was confirmed that the emission front of the Pb I 450.8 nm, Si 1288.2 nm and Ca I 422.6 nm almost coincide regardless of their atomic weight. This result also supports the shock wave plasma model because, by the stagnation of the propelling atoms, the front position of the all atoms coincides regardless of its mass. In the case of sub-target effect, confirm that plasma could be produced even for soft target if sub-target is set behind the sample. In this case we use a quartz sample as a sub-target and a vinyl tape was attached to the quartz sample as a target. The TEA CO2 laser bombardment was used at 150 ml and at 1 atm of air. The main role of the subtarget is to produce a repulsion force for atom gushing with high speed. For shock wave, high speed is necessary condition to compress the gas.
Coincidence of the movement of the shock wave front and the emission front in the initial stages of plasma expansion is a direct proof of the shock wave plasma model. By improving the detection technique of the density jump associated with the shock wave, the correlation between the shock wave front and the emission front was examined in detail. For this purpose rainbow interferometer system, which has higher sensitivity compared with the shadowgraph technique, was used to detect the density jump signal. We succeed to realize simultaneous detection of shock wave front and emission front from 3 Ton until 1 atm of air when a quartz sample is bombarded with a 600 nil TEA C02 laser. In all pressure that were examined, the shock wave front and the emission front always coincide and move together with time in the initial stages and separate at the later stages with emission front left behind the shock wave front. The coincidence of the shock wave front and emission front and move together with time at the initial stages of plasma expansion was also obtained by using ruby as a sample at 10 Torr and 100 Ton of air as well as with museum glass at the same laser pulse energy.
Another important experimental result obtained in this experiment is that confirmation of the coincidence of the target atomic emission front and gas atomic emission front and density jump. This confirmation was obtained by examined a Quartz sample in 50 Ton of helium and a zinc sample in 100 Ton of helium. This result strongly supports the shock wave plasma model because, in ordinary shock tube experiment, gas emission takes place just behind the shock wave.
From a practical point of view of direct microanalysis for spectrochemicaI application of alloy metal samples such as brass, selective vaporization effect was also studied. The results showed that even for Nd-YAG laser with short pulse duration (8 ns) and high power density (30 GWcm 2), selective vaporization take place to a certain extend. It was demonstrated in this experiment that selective vaporization is enhanced if the laser irradiation was repeated on the same spot of sample surface. Meanwhile it was also shown in this experiment that the effect of selective vaporization could be significantly suppressed by increasing the surrounding gas pressure from 2 Toff to around 50 Torr of air."
Depok: Fakultas Teknik Universitas Indonesia, 2000
D234
UI - Disertasi Membership  Universitas Indonesia Library
cover
Pardede, Marincan
"ABSTRAK
Telah dilakukan penelitian efek penguapan selektif (selective vaporation) plasma gelombang kejut (shock wave plasma) yang dibangkitkan dengan memfokuskan iradiasi laser TEA CO2 (130 mJ, 100 ns) atau laser Nd-YAG (50mJ, 8ns) pada bahan kuningan yang memiliki kandungan Zn (seng) dan Cu (tembaga) dalam udara tekanan rendah (1 Torr). Efek penguapan selektif akan terjadi apabila rapat daya laser yang digunakan tidak terlalu tinggi dibandingkan dengan nilai ambang batas pembangkitan plasma. Hasil pengamatan menunjukkan bahwa intensitas emisi Cu jauh lebih rendah dibandingkan dengan intensitas emisi Zn. Juga telah diamati bahwa titik awal (rising point) emisi Cu tertinggal dibandingkan dengan titik awal emisi Zn sepanjang daerah pengembangan plasma. Dalam kasus iradiasi laser CC2, penguapan selektif lebih dominan, dan kecepatan propagasi atom-atom Cu sangat rendah dibandingkan dengan atom-atom Zn. Hal ini menunjukkan bahwa gelombang kejut adalah dibentuk dari kumpulan atom-atom Zn, sedangkan atom-atom Cu yang datang terlambat tidak mampu membangkitkan gelombang kejutnya sendiri. Dilain pihak atom-atom Cu tersebut di atas juga tertinggal jauh dari muka gelombang kejut yang terbentuk oleh atorn-atom Zn, mengakibatkan atom-atom Cu ini tidak akan pernah tereksitasi.

ABSTRACT
TEA CO2 laser (130 mJ, 100 ns) and Nd-YAG laser (50 mJ, 8 ns) pulses were focused on brass samples under a reduced pressure of air at 1 Torr, and In and Cu emission characteristics were compared for the two cases. For the TEA CO2 laser the emission intensity of copper lines is extremely low, compared to zinc lines, indicating a serious selective-vaporization effect. By comparing the time-profile of the emission of In 1481.0 nm and Cu 1 327.4 nm near the surface, it was clearly shown that the gushing of Cu atoms occur later and continues for a long time with a rather low gushing speed, while In gushes faster at a high speed. Only In atoms form a shock front and Cu is left behind the shock-wave and does not undergo excitation. This type of selective vaporization takes place only when the power density of laser light is not high, compared to the threshold for plasma generation. The phenomenon of selective vaporization described in this paper also supports our laser-induced shock wave model.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library