Firdy Sani Adhyasta
Abstrak :
Proses perhitungan persentase mineral berdasarkan jenisnya atau point counting, merupakan salah satu proses yang tidak mudah. Boleh jadi seorang ahli geologi pun membutuhkan waktu yang relatif tidak singkat untuk melakukannya. Kesulitan ini terkait ukuran, objek penelitian, maupun perbedaan dalam menginterpretasikan objek yang diteliti. Di sisi lain pembelajaran mendalam atau deep learning menggunakan sistem kecerdasan buatan (artificial intelligence) dapat meniru manusia dan bagaimana jaringan saraf bekerja untuk melakukan suatu kegiatan. Skripsi ini membahas mengenai bagaimana sistem kecerdasan buatan digunakan untuk membantu identifikasi dan point counting mineral kuarsa, berdasarkan sampel sayatan tipis mikroskop polarisasi bidang. Sampel yang digunakan berasal dari sebagian daerah Kecamatan Agrabinta, Cidadap dan sekitarnya. Sampel sayatan tipis PPL batuan yang didapatkan dianalisis dengan tiga metode, yakni metode point counting konvensional, pengiriman beberapa sampel ke laboratorium, dan menggunakan sistem kecerdasan buatan aplikasi yang diberi nama Quartz Point Count. Dari ketiga metode kemudian dibandingkan hasil dari persentase mineral kuarsa. Hasil dari penelitian ini menunjukan penggunaan sistem kecerdasan buatan untuk point counting mineral kuarsa pada sampel wilayah penelitian, memiliki nilai perbedaan yang tidak signifikan dibandingkan hasil point counting konvensional, maupun hasil uji laboratorium.
......The process of calculating the percentage of minerals based on type or point counting is not an easy process. It may take a geologist a long time to do this. This difficulty is related to size, research object, and differences in interpreting the object. On the other hand, deep learning using an artificial intelligence system can imitate humans and the way neural networks work in carrying out many activities. This thesis explains how artificial intelligence systems are used to assist in the identification and point count of quartz mineral, based on thin section samples from a plane polarizing microscope (PPL). The samples used came from Agrabinta, Cidadap and surrounding areas. The PPL thin section rock samples obtained were analyzed using three methods, the conventional way of point counting, sending several samples to the laboratory, and using an artificial intelligence system application called Quartz Point Count. The three methods then compare the results of the percentage of quartz minerals. The research result shows that the use of an artificial intelligence system for calculating quartz mineral points in research location samples has no significant differences compared to conventional point counting results or laboratory test results.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library