Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Kriska Setyawati
"Ketersediaan dan kemudahan akses energi di daerah remote Indonesia masih belum cukup baik, hal ini merupakan suatu permasalahan yang serius. Oleh karena itu perlu adanya sistem terintegrasi yang menghasilkan multi utilitas dalam menghasilkan energi untuk memenuhi kebutuhan lokal. Sistem poligenerasi merupakan salah satu jawaban dari tantangan tersebut yang dibahas dalam penelitian ini.
Dalam penelitian ini dilakukan perbandingan antara efisiensi energi pada sistem pembangkit listrik berbahan bakar gas yang beroperasi secara standalone dibandingkan dengan menggunakan sistem poligenerasi yang dapat menghasilkan multi utilitas berdasarkan analisis teknis dan ekonomi. Utilitas yang dihasilkan berupa energi listrik, pendingin dan pemanas. Sistem poligenerasi ini disimulasikan dengan perangkat lunak Unisim Design R390.1 dan dianalisis secara tekno-ekonomi.
Hasil yang diperolah menunjukkan bahwa sistem poligenerasi dapat meningkatkan efisiensi sistem pembangkit listrik sebesar 26,89% dari efisiensi pembangkit listrik standalone  32,9% menjadi 59,7% setelah mengimplementasikan sistem poligenerasi serta menurunkan tarif listrik pembangkit standalone dibandingkan dengan skema bisnis Special Purpose Company dengan Insentif Finansial dan Insentif Fiskal (SPC IFN IFC) sebesar 36,2%.

The availability and easy of energy access in Indonesias remote areas are still not good enough, this is a serious problem. Therefore it is necessary to have an integrated system that produces multi-utility in producing energy to meet local needs. The polygeneration system is one of the answers to the challenges discussed in this study.
In this study a comparison between energy efficiency in a gas-fired power plant system that operates in a standalone operation compared to a polygeneration system that can produce multi-utility based on technical and economic analysis. The output utilities are electricity, cooling and heating. This polygeneration system is simulated with Unisim Design R390.1 software and analyzed technically and economically.
The results showed that the polygeneration system could increase the efficiency of the power generation system by 26.89% from the efficiency of the standalone power plant 32.9% to 59.7% after implementing the polygeneration system as well as reducing the standalone generator electricity tariff compared to the Special Purpose Company scheme with Financial Incentives and Fiscal Incentives (SPC IFN IFC) of 36.2%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52382
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Raihan Pratama
"Bioenergy with carbon capture and storage (BECCS) memiliki potensi besar dalam mengurangi emisi karbon dari atmosfer hingga dapat mencapai emisi negatif. Teknologi ini dapat diintegrasikan pada sistem poligenerasi pembangkit listrik biomassa dan green chemicals seperti metanol. Penelitian ini bertujuan untuk memperoleh efisiensi energi sistem secara keseluruhan, biaya produksi dan CO2 avoidance cost (CAC), serta nilai emisi CO2eq dari integrasi BECCS pada sistem poligenerasi. Aspen Plus v.11 digunakan untuk simulasi proses sistem poligenerasi, sedangkan unit CCS disimulasikan dengan Aspen HYSYS v.11. Dengan memvariasikan kapasitas produksi listrik, tandan kosong kelapa sawit (TKKS) digunakan sebagai bahan bakar pembangkit listrik biomass integrated gasification combined cycle (BIGCC) sehingga dihasilkan gas buang mengandung CO2 yang ditangkap untuk sintesis metanol dan CCS. Hidrogen untuk sintesis green methanol diproduksi melalui elektrolisis PEM dengan variasi dua sumber energi listrik terbarukan, yaitu energi surya (PV-PEM) dan energi geotermal (GEO-PEM). Analisis lingkungan dilakukan dengan metode life cycle assessment (LCA) dengan lingkup cradle-to-gate dan analisis keekonomian dilakukan dengan metode levelized cost. Hasil penelitian menunjukkan bahwa efisiensi sistem keseluruhan lebih tinggi pada skema PV-PEM (11,33%) daripada GEO-PEM (7,05%). Sistem BECCS yang diintegrasikan pada pembangkit listrik BIGCC menunjukkan emisi negatif (-1,00 sampai -0,76 kg CO2eq/kWh). Untuk sintesis metanol, nilai emisi dengan skema PV-PEM (-1,14 sampai -1,28 kg CO2eq/kg MeOH) lebih tinggi daripada skema GEO-PEM (-1,52 sampai -1,65 kg CO2eq/kg MeOH). Pembangkit dengan kapasitas 30,87 MW memiliki biaya produksi dan nilai CAC (0,181 USD/kWh dan 67,66 USD/ton CO2) yang lebih besar daripada kapasitas 50 MW (0,139 USD/kWh dan 56,06 USD/ton CO2). Skema PV-PEM menghasilkan biaya produksi metanol (1.011-1.049 USD/ton) yang lebih besar daripada skema GEO-PEM (967-1.005 USD/ton).

Bioenergy with carbon capture and storage (BECCS) has enormous potential to reduce carbon emissions from the atmosphere that may reach net-negative emissions. This technology may be integrated within the polygeneration system of biomass power plant and green chemicals, such as methanol. This research aims to obtain the system’s overall energy efficiency, the production and CO2 avoidance cost, as well as the emission factor of integrating BECCS in the polygeneration system. The processes of polygeneration system are simulated in Aspen Plus v.11; meanwhile, the CCS unit processes are simulated in Aspen HYSYS v.11. By varying the electricity production capacities, oil palm empty fruit bunches (OPEFB) are used as fuel for biomass integrated gasification combined cycle (BIGCC) power plant to produce exhaust gas containing CO2, which is captured for the methanol synthesis and CCS. Hydrogen for green methanol synthesis is produced through PEM electrolysis powered by two different renewable energy sources, i.e., solar (PV-PEM) and geothermal energy (GEO-PEM). The environmental aspects are assessed with the life cycle assessment (LCA) with a cradle-to-gate scope, and the economic aspects are analyzed with the levelized cost method. The research shows that the overall system efficiency is higher in the PV-PEM scheme (11.33%) than in the GEO-PEM scheme (7.05%). The BECCS system integrated into the polygeneration system exhibits negative emissions (-1.00 to -0.76 kg CO2eq/kWh). The emission value for the methanol synthesis with the PV-PEM scheme (-1.14 to -1.28 kg CO2eq/kg MeOH) is higher than that with the GEO-PEM (-1.52 to -1.65 kg CO2eq/kg MeOH). The 30,87 MW-capacity BIGCC has a higher production cost and CAC value (0.181 USD/kWh and 67.66 USD/ton CO2) than the 50-MW capacity (0.139 USD/kWh and 56.06 USD/ton CO2). The PV-PEM scheme results in higher methanol production costs (1,011-1,049 USD/ton) than of the GEO-PEM scheme (967-1,005 USD/ton)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erwin Apriandi
"Energi panas bumi merupakan sumber energi terbarukan yang andal, namun pembangkit listrik tipe single-flash belum memanfaatkan potensi panas sisa dari brine reinjeksi secara optimal. Sistem poligenerasi menawarkan pendekatan efisien dengan menghasilkan lebih dari tiga produk sekaligus, memberikan keuntungan dari sisi ekonomi, lingkungan, dan desain sistem energi. Studi ini mengusulkan sistem poligenerasi terintegrasi yang memanfaatkan brine reinjeksi dari Lahendong Unit 3 untuk meningkatkan efisiensi dan keberlanjutan panas bumi. Sistem ini memproduksi listrik, pendingin, pemanas, hidrogen hijau, dan pasir silika sebagai produk sampingan melalui kombinasi siklus double-flash, Binary-ORC, TAR, CRC, IR-HAD, dan AE. Analisis dilakukan dari aspek termodinamika (efisiensi energi dan eksergi, serta pengurangan ireversibilitas), lingkungan (emisi GRK dan penghindarannya melalui substitusi listrik berbasis fosil), dan ekonomi (BP, HPP, NPV, IRR, dan PBP). Hasil menunjukkan peningkatan efisiensi energi dari 10,0% menjadi 14,7%, efisiensi eksergi dari 24,6% menjadi 36,1%, serta pengurangan ireversibilitas dari 78,0 MW menjadi 44,2 MW. Emisi GRK dari produk poligenerasi lebih rendah dibandingkan referensi produk sejenis dan sistem ini juga berpotensi menghindari emisi CO₂ sebesar 1,69 juta ton hingga 2028. Secara ekonomi, sistem dinilai layak dengan NPV sebesar 47,8 juta USD, IRR 26,9%, dan PBP selama 6,6 tahun. Layanan pendingin dan pemanas berbasis CSR turut memperkuat akses energi lokal dan dampak sosial.

Geothermal energy is a reliable renewable resource, yet single-flash power plants often underutilize the residual thermal potential in reinjection brine. Polygeneration systems offer an efficient approach by producing more than three outputs simultaneously, enhancing economic performance, environmental sustainability, and energy system optimization. This study proposes an integrated polygeneration system utilizing reinjection brine from Lahendong Unit 3 to improve geothermal efficiency and sustainability. The system co-produces electricity, cooling, heating, green hydrogen, and silica sand as a by-product through a combination of double-flash cycle, Binary-ORC, TAR, CRC, IR-HAD, and AE units. The system is analysed from thermodynamic (energy and exergy efficiency, irreversibility reduction), environmental (GHG emissions and avoidance via fossil-based electricity substitution), and economic (production cost, breakeven price, NPV, IRR, and PBP) perspectives. Results show an increase in energy efficiency from 10.0% to 14.7%, exergy efficiency from 24.6% to 36.1%, and a reduction in irreversibility from 78.0 MW to 44.2 MW. GHG emissions from the polygeneration product are lower compared to similar reference products, and this system can avoid up to 1.69 million tonnes of CO₂ emissions by 2028. Economically, the system is feasible, achieving an NPV of USD 47.8 million, IRR of 26.9%, and a PBP of 6.6 years. CSR-driven cooling and heating services further enhance local energy access and social impact. "
Depok: Fakultas Teknik Universitas Indonesia, 2025
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Forman, Clemens
"Coupling power generation with syngas-based chemical synthesis according to the so-called ‘Polygeneration-Annex’ concept offers economic and technical benefits. Clemens Forman assesses the integration of incoming streams by the Annex plant from a power plant point of view across its full load range. Analyses are done by load-dependent flowsheet simulation. The pulverized lignite combustion power plant process is covered by two generic technical states: an existing 650 MW(el) power plant and a near future 1,100 MW(el) power plant with duo block design and dry lignite co-firing. Modeling comprises both the flue gas path and the water-steam circuit. Appropriate stream interfaces are identified and determined depending on the load status. The technical feasibility of integration can be proven."
Germany: Springer Vieweg Wiesbaden, 2019
e20501374
eBooks  Universitas Indonesia Library