Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Eliza Habna Lana
"Penelitian slow co-pyrolysis bonggol jagung dan plastik polipropilena telah dilakukan untuk mempelajari pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil yang dihasilkan. Pengaruh laju alir gas pembawa diteliti dengan memvariasikan laju alir nitrogen sebesar 400 mL/menit, 500 mL/menit, dan 600 mL/menit dengan masing-masing variasi laju alir nitrogen dilakukan pada 3 rasio komposisi bonggol jagung dan plastik polipropilena, yaitu 0 :100 , 50 :50 , dan 100 :0 . Proses slow co-pyrolysis berlangsung di reaktor tangki berpengaduk, dengan suhu akhir 500°C, holding time 10 menit, heating rate 5oC/menit, dan total massa umpan 100 gram. Identifikasi pengaruh laju alir gas pembawa dilakukan dengan menganalisis bio-oil fasa polar dan nonpolar menggunakan FTIR, GC-MS, dan H-NMR.
Hasil penelitian ini menunjukkan terdapat pengaruh laju alir gas pembawa terhadap yield dan komposisi bio-oil hasil slow co-pyrolysis bonggol jagung dan plastik polipropilena. Semakin besar laju alir nitrogen menghasilkan yield bio-oil yang semakin besar dan yield char yang semakin rendah. Yield bio-oil tertinggi sebesar 47,9 mL pada laju alir nitrogen 600 mL/menit, sedangkan efek sinergetik terbaik sebesar 35 pada laju alir nitrogen 400 mL/menit. Berdasarkan karakterisasi GC-MS dan H-NMR seiring semakin besar laju alir nitrogen maka gugus fungsi alkana semakin rendah dan alkena semakin tinggi pada bio-oil nonpolar, serta gugus fungsi karboksilat semakin rendah dan gugus fungsi furan, fenol, guaiacol, catechol semakin tinggi pada bio-oil polar.

Research that focused on slow co pyrolysis of corn cobs and polypropylene plastic has been done to study the effect of carrier gas flow rate on yield and composition of bio oil. The effect of carrier gas flow rate was investigated by varying nitrogen flow rate of 400 mL min, 500 mL min and 600 mL min with each variation performed on 3 ratio of corn cobs and polypropylene plastic are 0 100 , 50 50 , and 100 0 . The slow co pyrolysis process takes place in a stirred tank reactor, with final temperature of 500°C, holding time of 10 minutes, heating rate of 5oC min, and total mass of feed 100 grams. Identification of the effect of carrier gas flow rate is done by analyzing polar and nonpolar phase bio oil using FTIR, GC MS, and H NMR.
The results of this study indicate that there is an effect of carrier gas flow rate on yield and bio oil composition of slow co pyrolysis of corn cobs and polypropylene plastic. The greater the nitrogen flow rate results in greater bio oil yield and lower yield char. The highest bio oil yield was 47.9 mL at nitrogen flow rate of 600 mL min, while the best synergetic effect was 35 at nitrogen flow rate of 400 mL min. Based on the characterization of GC MS and H NMR as the greater the nitrogen flow rate the alkane functional group is lower and the higher the alkene in nonpolar bio oil, and the lower carboxylic functional groups and the furan, fenol, guaiacol, catechol functional groups are higher in polar bio oil.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Niken Balqis Fisabila Helmi
"Penelitian mengenai identifikasi keanekaragaman serta perhitungan kelimpahan mikroalga epiplastik di substrat sampah plastik makanan kemasan jenis polypropylene yang berpotensi menyebabkan Harmful Algal Blooms di lakukan di Pantai Lagoon Ancol dengan metode purposive random sampling pada 3 titik stasiun dengan metode subsample di bawah mikroskop. Tujuh belas genus mikroalga epiplastik ditemukan yang berasal dari tiga kelas, yaitu Bacillariophyceae (14 genus), Dinophyceae (1 genus), dan Cyanophyceae (2 genus) dengan 3 genus yang berpotensi toksik. Tujuh belas genus tersebut adalah Achnanthes, Cocconeis, Coscinusdiscus, Cymbela, Gyrosigma, Lyngbya, Mastogloia, Merismopedia, Navicula, Nitzschia, Paralia, Pleurosigma, Prorocentrum, Skeletonema, Stephanopyxis, Thalassionema, dan Thalassiosira. Hasil penelitian menunjukan kelimpahan total mikroalga epiplastik berkisar 249 – 24.051 sel/gram dengan kelimpahan terbesar dari genus Navicula sebesar 121.342 sel/gram dan terkecil dari genus Merismopedia sebesar 249 sel/gram. Berdasarkan perhitungan korelasi Pearson, hampir semua parameter lingkungan yang diukur berpengaruh sangat tinggi dengan rentang koefisien ± 0.80 – ± 1.00, dengan koefisien korelasi terendah oleh intensitas cahaya yaitu 0.3 dimana termasuk kedalam rentang berpengaruh rendah.
......Research on identifying diversity and calculating the abundance of epiplastic microalgae in polypropylene plastic food packaging waste substrates that have the potential to cause Harmful Algal Blooms was conducted at Ancol Lagoon Beach with purposive random sampling method at 3 station points and using the subsample method under a microscope. Seventeen genera of epiplastic microalgae were found from three classes, namely Bacillariophyceae (14 genera), Dinophyceae (1 genus), and Cyanophyceae (2 genera) with 3 potentially toxic genus. The seventeen genera are Achnanthes, Cocconeis, Coscinusdiscus, Cymbela, Gyrosigma, Lygbya, Mastogloia, Merismopedia, Navicula, Nitzschia, Paralia, Pleurosigma, Prorocentrum, Skeletonema, Stephanopyxis, Thalassionema, and Thalassiosira. The results showed that the total abundance of epiplastic microalgae ranged from 249 – 24.051 cells/gram with the greatest abundance from the genus Navicula of 121.342 cells/gram and the smallest from the genus Merismopedia of 249 cells/gram. Based on Pearson correlation calculations, almost all environmental parameters measured have a very high effect with a coefficient range of ± 0.80 – ± 1.00, with the lowest correlation coefficient by light intensity of 0.3 which is included in the low influential range."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Fandhi
"Bio-oil hasil produksi dari co-pyrolysis CPO-PP tidak dapat langsung digunakan sebagai bahan bakar untuk mesin karena masih mengandung oksigenat yang cukup banyak, korosif, dan tidak stabil. Pada penelitian ini, katalis ZrO2/α-Al2O3-TiO2 diharapkan dapat memperbaiki karakteristik bio-oil dan menciptakan bahan bakar yang memiliki karakteristik mendekati bahan bakar komersial. Katalis disintesis dengan suhu variasi suhu kalsinasi 1150oC dan laju pemanasan 7oC/menit. Pada proses catalytic co-pyrolysis dilakukan variasi komposisi polipropilena pada umpan yang digunakan (0%PP, 50%PP, dan 90%PP) dengan memasukkan katalis sebanyak 15% dari total umpan. Penelitian ini dilakukan menggunakan reaktor tangki berpengaduk dengan jumlah umpan 200 gram, kecepatan pemanasan 10oC/menit, suhu pirolisis 550oC, kecepatan pengadukan 80 rpm, dan laju alir gas nitrogen 100 ml/menit. Produk bio-oil terbaik dihasilkan pada variasi 50%PP dengan yield bio-oil sebesar 50%. Penggunaan katalis ZrO2/α-Al2O3-TiO2 dapat meningkatkan produksi alkana dan alkena dengan menurunkan kandungan asam karboksilat dan keton di dalam biofuel. Hal ini menunjukkan bahwa penggunaan katalis mampu memaksimalkan reaksi deoksigenasi, Berdasarkan analisis GC-MS, H-NMR, dan C-NMR senyawa yang paling dominan adalah alkana dan alkena.
......Bio-oil produced from co-pyrolysis CPO-PP cannot be used directly as fuel for engines because it still contains a lot of oxygenate, is corrosive, and unstable. In this study, the ZrO2 / α-Al2O3-TiO2 catalyst is expected to improve the characteristics of bio-oil and create a fuel that has characteristics close to commercial fuels. The catalyst was synthesized with calcination temperature variations of 1150oC and heating rates of 7oC/minute. In the catalytic co-pyrolysis process, variations in the composition of polypropylene in the feed is used (0% PP, 50% PP, and 90% PP) and were carried out by adding a catalyst as much as 15% of the total feed. This research was conducted using a stirred tank reactor with a feed amount of 200 grams, heating rate 10oC/minute, pyrolysis temperature 550oC, stirring speed 80 rpm, and nitrogen gas flow rate of 100 ml/minute. The best bio-oil products are produced in variations of 50% PP with a bio-oil yield of 50%. The use of ZrO2/α-Al2O3-TiO2 catalysts can increase the production of alkanes and alkenes by reducing the carboxylic acid and ketone content in biofuels. This shows that the use of a catalyst is able to maximize the deoxygenation reaction. Based on the GC-MS, H-NMR, and C-NMR analysis the most dominant compounds are alkanes and alkenes."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adam Yuta Prayoga
"Tujuan dari penelitian ini di fokuskan pada properti dari kuat rekat beton pada batang besi ulir yang tertanam dalam beton ringan dengan polimer sebagai agregat kasar pada campuran beton ringan. Campuran pertama menggunakan campuran 100 agregat kasar 25mm, pada desain campuran kedua meggunakan ukuran yaitu 70 25mm dan 30 20mm, kedua campuran tersebut menggunakan 0.4 superplasticizer. Total benda uji masing-masing campuran A dan B sebanyak 32 buah dengan diameter yang berbeda yaitu 10,12, dan 16mm. Hasil akhir dari penelitian ini menunjukan benda uji yang memiliki kuat tekan lebih tinggi akan menghasilkan hasil tes kuat tarik yang lebih tinggi.
The purpose of this research is focused on studying the bond properties of deformed steel embedded in lightweight concrete with polypropylene as the coarse lightweight aggregate. By following ACI211.2.98 this research is using two types of mix design which one is using fully 100 of 25mm size of aggregate diameter and the second one is 70 25mm and 30 20mm diameter aggregate sizes, with both of the mix design is using superplasticizer additive 0.4 . The testing method of Pull out test followed RILEM 7 testing method, by using self made frame for 24 sample of the specimens, by each of the mixture is 12 specimens with different diameter of steel bar which is 10, 12, and 16 mm. Final result of this research shows that the sample with higher compressive strength is showing higher bond strength value. "
2017
S66372
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didik Nur Sahid
"Energi merupakan aspek penting penunjang kehidupan dan hingga saat ini terus dikembangkan pemanfaataannya.. Salah satu bahan bakar alternatif yaitu biofuel yang diperoleh dari bio-oil yang telah ditingkatkan kualitasnya sesuai dengan standar. Di pihak lain, buangan plastik yang didominasi polipropilen semakin hari semakin bertambah. Dalam penelitian ini menggunakan bahan baku RBDPO (refined, bleached, deodorised palm oil) yang mewakili crude palm oil dan plastik polipropilen sebagai donor hidrrogen radikal dan hasil pirolisisnya sebagai bagian dari hidrokarbon. Penelitian ini terdapat rangkaian proses slow thermal co-pyrolysis, catalytic co-pyrolysis dan hidrodeokigenasi. Slow thermal co-pyrolysis menggunakan umpan plastik polipropilena dengan laju pemanasan 10 , kemudian dalam proses catalytic co-pyrolysis menggunakan variasi massa katalis sebesar 3, 5, dan 7% dari massa umpan poliprolipena dan RBDPO. Penggunaan katalis Ni/ZrO2SO4 yang memiliki tingkat keasaman tertentu meningkatkan hasil yield bio oil dan kandungan oksigenat yang rendah. Selain itu katalis Ni/ZrO2SO4 (asam brosnted dan lewis) menyebabkan mid-chain scission PP sehinggaa distribusi panjang rantai karbon mengarah pada fraksi diesel. Efek dari penggunaan feed PP yang memberikan donor radikal hidrogen meningkatkan hasil yield bio oil dari 6% menjadi 68% menunjukkan efek sinergis antara RBDPO dan plastik polipropilena.
......Energy is an important aspect of life support and until now its utilization continues to be developed. One of the alternative fuels is biofuel obtained from bio-oil with an increase in quality according to standards. On the other hand, plastic waste which is dominated by polypropylene is increasing day by day. In this study, the raw material used is RBDPO (refined, bleached, deodorised palm oil) which represents crude palm oil along with polypropylene plastic as hydrogen radical donors and the pyrolysis products as part of the hydrocarbons. This research contains a series of processes of slow thermal co-pyrolysis, catalytic co-pyrolysis and hydrodeoxygenation. Slow thermal co-pyrolysis using polypropylene plastic feed with a heating rate of 10℃/min, then in the catalytic co-pyrolysis process using a catalyst mass variation of 3, 5, and 7% of the mass of polypropylene and RBDPO feeds. The use of Ni/ZrO2SO4 catalyst with a certain level of acidity increases the yield of bio oil and has a low oxygenate content. In addition, Ni/ZrO2SO4 catalyst (Brosnted and Lewis acids) causes mid-chain scission of PP, so that the distribution of carbon chain length leads to the diesel fraction. The effect of using PP feed which provides hydrogen radical donors increases the yield of bio oil from 6% to 68%, indicating a synergistic effect between RBDPO and polypropylene plastic."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhri Raihan Ramadhan
"Ko-pirolisis polipropilena dan minyak kelapa sawit memberikan cara pemanfaatan limbah plastik polipropilena. Penelitian ini akan meneliti reaksi ko-pirolisis di dalam reaktor tangki berpengaduk menggunakan katalis ceramic foam ZrO2/Al2O3-TiO2 untuk mengakomodasi ukuran molekul reaktan yang besar. Tujuan penelitian ini adalah untuk mendapatkan pengaruh laju pemanasan dan komposisi rasio umpan plastik polipropilena dari 0, 25, 50, 75, dan 100 % berat umpan terhadap hasil produk ko-pirolisis dan komposisi bio-oil. Produk dari ko-pirolisis akan dianalisis menggunakan metode Karl- Fischer, FTIR, GC-MS, C-NMR, dan DEPT 135 untuk menentukan kemungkinan jalur reaksi, komposisi senyawa, dan ikatan kimia yang ada di dalam bio-oil dan wax. Terdapat pengaruh laju pemanasan dan rasio umpan polipropilena terhadap jumlah produk dan senyawa kimia di dalam bio-oil. Penggunaan katalis ceramic foam ZrO2/Al2O3-TiO2 mampu meningkatkan kualitas dan yield produk akhir. Sistem pirolisis katalitik laju pemanasan tinggi tidak menunjukkan efek sinergis antara PP dan CPO dalam yield dan komponen non-oksigenat karena fraksi non-oksigenat yang rendah di bio-oil dan yield bio-oil yang rendah. Sistem pirolisis termal menunjukkan efek sinergis yang lebih tinggi antara PP dan CPO terhadap yield bio-oil yang lebih tinggi. Sistem pirolisis katalitik laju pemanasan rendah menunjukkan efek sinergis tertinggi antara PP dan CPO dalam hal jumlah fraksi non-oksigenat dan yield dari bio-oil. Analisis C-NMR dan DEPT-135 dari bio-oil menunjukkan bahwa sistem katalitik dan termal dengan laju pemanasan tinggi memiliki jumlah karbon yang terikat pada oksigen lebih tinggi dibandingkan dengan sistem katalitik laju pemanasan rendah yang menunjukkan efisiensi deoksigenasi yang lebih tinggi.
......Co-pyrolysis of polypropylene and crude palm oil gives the benefit of utilizing plastic waste of polypropylene. In the present research, co-pyrolysis reaction in a stirred tank reactor will be investigated using ZrO2/Al2O3-TiO2 ceramic foam catalyst to accommodate the large molecular size of reactants. The objectives are to obtain effects of heating rate and feed composition of polypropylene plastic from 0, 25, 50, 75, and 100 wt.% of total feed weight on yields of co-pyrolysis products and composition of bio-oil. The products were analyzed using Karl-Fischer, FTIR, GC-MS, C-NMR, and DEPT 135 to determine the possible reaction pathway, compound compositions, and chemical bonds in the bio-oil and wax. There is an effect of heating rate and feed composition on the yield and chemical compound of the product. The use of ZrO2/Al2O3-TiO2 ceramic foam catalyst improve the quality and yield of the final product. Catalytic high heating rate pyrolysis showed no synergetic effects between PP and CPO on bio-oil yield and non- oxygenates components due to low non-oxygenates fractions in bio-oil and low bio-oil yield. Thermal pyrolysis showed synergetic effects between PP and CPO on bio-oil yield. Catalytic low heating rate pyrolysis showed high synergetic effects between PP and CPO in terms of the quantity of non-oxygenates fractions in bio-oil and the bio-oil yield. C- NMR and DEPT-135 of bio-oil suggested that catalytic and thermal high heating rate system contained higher amount of carbon bound to oxygen compared to the catalytic low heating rate system which indicated higher deoxygenation efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library