Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Sinaga, Taufik Mawardi
"Reservoir karbonat diperkirakan mengandung hampir 60% dari total cadangan hidrokarbon dunia dan diperkirakan memiliki 50% dari total produksi hidrokarbon. Hidrokarbon umumnya terdapat pada batuan berpori. Porositas batuan karbonat umumnya memiliki heterogenitas yang tinggi, kompleksitas, dan random. Salah satu metode yang efektif untuk mengatasi heterogenitas adalah metode neural network. Sehingga penelitian ini bertujuan untuk menetukan distribusi porositas dengan neural network pada batuan karbonat dengan menggunakan 2 data sumur dan data seismik 2D post stack time migration (PSTM) pada lapangan T. Seismik atribut yang digunakan sebagai input proses probabilistic neural network berupa data seismik dan hasil inversi serta log yang akan diprediksi penyebarannya. Digunakan step wise regression dan validation error untuk menentukan atribut terbaik yang akan digunakan.
Hasil prediksi nilai porositas menggunkan probabilistic neural network dengan input atribut terbaik yang telah terpilih menghasilkan korelasi yang lebih baik 0.81 dengan error 0.03 dibanding dengan metode multiatribut yang menggunakan persamaan linier yaitu 0.66 dengan error 0.04 dan hasil model log prediksi mendekati log aktual. Hasil distribusi porositas dapat dianilisis bahwa nilai porositas pada sumur C1 memiliki nilai porositas efektif yang rendah dibandingkan dengan sumur C4.

Reservoir carbonate mostly contains 60% of total hydrocarbon preserves in the world, and it is predicted about 50% which is produced hydrocarbon. Commonly, hydrocarbon is found in the rock pores. The porosity of carbonate, generally, has high heterogeneity, complexity, and random. One of effective methods to solve the problem is neural network. The aim of this study is to determine the distribution of porosity using neural network for carbonate in T field. Seismic attribute is used as input in neural network process which is seismic data, inversion result, and well log. Step wise regression and validation error are used to determine the best attributes that will be used to.
The prediction result of porosity using probabilistic neural network with the best attribute has better correlation than using multi attributes for linier method. The correlation and error value using neural network are 0.08% and 0.03%, while the value of correlation and error using multi attribute for linier method are 0.06% and 0.04%, respectively. The predicted log model is approaching the actual log. The result of porosity distribution shows that the porosity value of well C1 has lower effective porosity than well C4.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T53081
UI - Tesis Membership  Universitas Indonesia Library
cover
Destya Andriyana
"Lapangan ‘B’ merupakan lapangan prospek hidrokarbon yang berlokasi di offshore
cekungan Kutai, Kalimantan Timur. Untuk mengetahui karakterisasi reservoir lapangan
‘B’, dilakukan pemodelan porositas dan saturasi air menggunakan inversi AI, multiatribut
seismik dan probabilistic neural network. Penelitian ini menggunakan data seismik 3D
PSTM dan data sumur (AND-1, AND-2, AND-3 dan AND-4). Pada data seismik dan data
sumur dilakukan inversi AI untuk mengetahui sifat litologi area penelitian. Kemudian,
hasil AI ditransformasikan untuk mendapatkan model porositas. Metode multiatribut
seismik menggunakan beberapa atribut untuk memprediksi model porositas dan saturasi
air. Setelah itu, diaplikasikan sifat non-linear dari probabilistic neural network sehingga
menghasilkan model porositas dan saturasi air hasil probabilistic neural network (PNN).
Model porositas dan saturasi air transformasi AI, multiatribut seismik dan PNN divalidasi
dengan nilai porositas dan saturasi air data sumur untuk mengetahui apakah model
porositas dan saturasi air tersebut merepresentatifkan nilai data sumur. Validasi dilakukan
pada sumur AND-1 dan AND-2. Nilai porositas dan saturasi air data sumur untuk AND-
1 adalah 25.3 – 35.9% dan 45 – 60%, dan nilai porositas dan saturasi air AND-2 adalah
11 – 35% dan 15 – 82%. Nilai porositas AND-1 hasil transformasi AI sekitar 16 – 67%,
multiatribut seismik sekitar 11.5 – 27% dan PNN sekitar 11.5 – 27%. Nilai saturasi air
AND-1 hasil multiatribut seismik sekitar 4 – 63% dan PNN sekitar 18 – 63%. Nilai
porositas AND-2 hasil transformasi AI sekitar 52 – 72%, multiatribut seismik sekitar 11
– 21.5% dan PNN sekitar 11 – 21.5%. Nilai saturasi air AND-2 hasil multiatribut seismik
sekitar 63 – 85% dan PNN sekitar 63 – 85%. Kemudian, metode multiatribut seismik dan
PNN didapatkan nilai korelasi antara parameter target dengan parameter prediksi. Model
porositas multiatribut seismik memiliki korelasi 0.840836 dan PNN memiliki korelasi
0.936868. Model saturasi air multiatribut seismik memiliki korelasi 0.915254 dan PNN
memiliki korelasi 0.994566. Model porositas transformasi AI memiliki rentang yang
lebih tinggi dibandingkan dengan data sumur. Model porositas dan saturasi air metode
PNN memiliki rentang nilai yang cukup dekat dengan data sumur dan memiliki korelasi
yang lebih tinggi dibandingkan dengan metode multiatribut seismik. Oleh sebab itu,
model porositas dan saturasi air metode PNN merupakan model prediksi terbaik.
Berdasarkan model PNN, reservoir zona target lapangan ‘B’ memiliki nilai impedansi
akustik 25384 – 26133 ((ft/s)*(g/cc)), porositas sekitar 15 – 27% dan nilai saturasi air
sekitar 11 – 63%.

The 'B' field is a hydrocarbon prospect field located in the offshore Kutai Basin, East
Kalimantan. To determine the characterization of the ‘B’ field reservoir, porosity and
water saturation modeling was carried out using AI inversion, seismic multiattribute and
probabilistic neural network. This study uses 3D PSTM seismic data and wells data
(AND-1, AND-2, AND-3 and AND-4). In seismic data and wells data, AI inversion was
carried out to determine the lithological characteristics of the research area. Then, the AI
results were transformed to obtain a porosity model. The seismic multiattribute method
uses several attributes to predict the porosity and water saturation model. After that, the
non-linear properties of the probabilistic neural network were applied to produce the
porosity and water saturation model of the probabilistic neural network (PNN). The
porosity and water saturation model of AI transformation, seismic multiattribute and PNN
were validated with the porosity and water saturation values of the wells data to determine
whether the porosity and water saturation models represent the wells data values.
Validation was carried out on AND-1 and AND-2 wells. The porosity and water
saturation value of the well data for AND-1 around 25.3 - 35.9% and 45 - 60%, and the
porosity and water saturation value of AND-2 around 11 - 35% and 15 - 82%. The
porosity value of AND-1 as a result of AI transformation is around 16 - 67%, the seismic
multiattribute about 11.5 - 27% and the PNN about 11.5 - 27%. The water saturation value
of AND-1 resulted from seismic multiattribute around 4 - 63% and PNN around 18 - 63%.
The porosity value of AND-2 transformed by AI around 52 - 72%, the seismic
multiattribute around 11 - 21.5% and the PNN around 11 - 21.5%. The water saturation
value of AND-2 result from the seismic multiattribute around 63 - 85% and PNN around
63 - 85%. Then, the multiattribute seismic and PNN methods obtained the correlation
value between the target parameter and the predicted parameter. The seismic
multiattribute porosity model has a correlation of 0.840836 and PNN has a correlation of
0.936868. The multiattribute seismic water saturation model has a correlation of 0.915254
and PNN has a correlation of 0.994566. The AI transformation porosity model has a
higher range than the wells data. The PNN method of porosity and water saturation model
has a fairly close range of values to wells data and has a higher correlation than the
multiattribute seismic method. Therefore, the porosity and water saturation model of the
PNN method is the best prediction model. Based on the PNN model, the field target zone
reservoir 'B' has an acoustic impedance value about 25384 – 26133 ((ft/s) * (g/cc)), a
porosity of 15 - 27% and a water saturation of 11 - 63%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Ester Fatmawati
"Telah dirancang prototype motor imagery dengan memanfaatkan perintah sinyal otak yang dihasilkan oleh Electroencephalography EEG . Sinyal EEG digunakan untuk memberikan informasi sinyal motorik. Bentuk unik dari sinyal EEG menggambarkan perintah untuk menggerakkan lengan. Pada kondisi lumpuh sekalipun, informasi motorik pada sinyal EEG masih akan ditemukan saat seseorang membayangkan menggerakkan lengannya.
Dalam penelitian ini informasi motorik pada sinyal EEG digunakan sebagai umpan balik dengan menggabungkan 4 elektrode input F3, F4, FC5, FC6 . Akuisisi sinyal EEG menggunakan Emotiv EPOC portable. Probabilistic Neural Network PNN berfungsi sebagai pemrosesan sinyal. Fungsi ini digunakan untuk pengenalan sinyal motor imagery membayangkan gerakan lengan tangan . Karakteristik komputasi yang dilakukan oleh PNN secara parallel mampu mempersingkat waktu pemrosesan sinyal.
Hasil pengolahan PNN adalah power maksimum sinyal mu, Power maksimum sinyal beta, frekuensi mu dan frekuensi beta. Kombinasi keempat fitur ini memberikan nilai akurasi yang cukup tinggi. Hasil percobaan menunjukkan bahwa akurasi untuk training rata-rata adalah 85,49 - 91,32 sedangkan nilai untuk testing 82,6 - 87,6 . Alat terapi yang digunakan nBETTER Upper Limb Feedback. Alat terapi akan aktif, bila nilai testing sinyal EEG lebih besar dari 80 . Ke depan, prototype motor imagery ini dapat dikembangkan sebagai alat terapi pasien stroke yang mampu mengurangi ketergantungan pada seorang fisioterapis saat proses terapi.

A modeling arms post stroke therapy used command brain signals generated by Electroencephalography EEG has been designed. EEG signals used to provide motorics information. The unique form of signal EEG describe commands to move the limbs. On condition paralyzed, motorics information on the EEG signals will still be found when someone tried to move his limbs.
In this research, we aim used the motorics information on the EEG signals as neuro feedback with combine 4 input electrode F3, F4, FC5, FC6. EEG signal acquisition using the Emotiv EPOC portable. Probabilistic Neural Network PNN function as signal processing. This function was applied to the recognition research of motor imagery EEG signals imagining arms movement . The parallel computing characteristic of PNN not only improved the generation ability for network, but also shorted the operation time.
The result of PNN are maximum mu power, maximum beta power, mu frequency and beta frequency that provided value to calculate classification accuracy. The experimental results show that the accuracy for training on average is 85.49 91.32 while the value for testing is 82.6 87.6. Therapy tool used nBETTER Upper Limb Feedback. The therapeutic tool will be active, when the value of the EEG signal testing is greater than 80. In the future, this modeling post stroke therapy can be reduced dependency from physiotherapist.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47558
UI - Tesis Membership  Universitas Indonesia Library
cover
Setianto Nugroho
"Lapangan “DEWI”, yang berlokasi di Cekungan Bonaparte Maluku Tenggara merupakan lapangan gas dengan reservoir utama yang terletak pada Formasi Plover, yang didominasi oleh batu pasir. Berdasarkan analisa struktur didapatkan bahwa lapangan ini memiliki satu sesar utama yang membagi blok utara dan blok selatan. Berdasarkan analisis petrofisika didapatkan bahwa zona prospek hidrokarbon dari lapangan ini terletak di formasi Plover dan Zona A. Penelitian ini bertujuan untuk menganalisis distribusi parameter petrofisika seperti porositas, volume shale, dan saturasi air yang penting dalam karakterisasi reservoir. Penelitian ini menggunakan analisis seismik multiatribut dan probabilistic neural network untuk memprediksi parameter petrofisika berdasarkan atribut dari data seismik. Hasil menunjukkan bahwa pada penelitian ini probabilistic neural network memiliki keunggulan dalam memprediksi parameter petrofisika untuk karakterisasi reservoir dibanding multiatribut konvensional. Berdasarkan hasil dari pemetaannya ditemukan variasi yang menarik dalam persebaran parameter petrofisika pada formasi Plover dan Zona A. Hasil dari penelitian ini dapat digunakan untuk menyediakan pemahaman baru dalam karakterisasi daerah berpotensi hidrokarbon di Lapangan “DEWI”.

The “DEWI” field, which is located in the Bonaparte Basin, Southeast Maluku, is a gas field with the main reservoir located in the Plover Formation, which is dominated by sandstone. Based on structural analysis, it was found that this field has one main fault that divides the northern block and the southern block. Based on petrophysical analysis, it was found that the hydrocarbon prospect zone of this field is located in The Plover Formation and Zone A. This research aims to analyze the distribution of petrophysical parameters such as porosity, shale volume, and water saturation which are important in reservoir characterization. This research uses multi-attribute seismic analysis and probabilistic neural networks to predict petrophysical parameters based on attributes from seismic data. The results show that in this study the probabilistic neural network has advantages in predicting petrophysical parameters for reservoir characterization compared to conventional multi-attributes. Based on the results of the mapping, enticing variations were found in the distribution of petrophysical parameters in The Plover Formation and Zone A. The results of this research can be used to provide new insights into the characterization of potential hydrocarbon areas in the "DEWI" Field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Harmoko Saputro
"Telab dikembangkan Sistem Pengenalan Cacat pada Pengelasan Melat dengan menggunakan analisis multi resolusi sebagai ekstraksi ciri dan jaringan neural buatan sebagai pengklasiflkasinya. Input citra merupakan film Sinar-X dari teknik radiografi beberapa pengelasan metal yang telah didigitalisasi. Ekstraksi ciri menggunakan wavelet dan 14 ciri Harralick untuk mengenali pola tektur dalam citra. Sedangkan jaringan neural buatan yang digunakan adalah Back Propagation dan Probabilistic Neural Network. Pengklasifikasi pengenalan cacat akan dikelompokan menjadi 8 kelas berdasarkan jenis cacat yaitu : kelas 1 (normal), kelas 2 (distributed porosity), kelas 3 (incomplete penetration), kelas 4 (burn through), kelas 5 (cluster porosity), kelas 6 (excessive cap), kelas 7 (excessive penetration) dan kelas 8 (incomplete fussion). Hasil akurasi pengenalan terbaik untuk citra yang belum diketahui jenis cacatnya mencapai 83% untuk perbandingan data pelatihan dan data pengujian 1; 1."
2004
JIKT-4-1-Mei2004-19
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Supeni
"Proses optimasi pada Probabilistic Neural Network (PNN) dapat dilakukan terhadap nilai smoothing parameter maupun struktur neuron. Setiap permasalahan memiliki nilai smoothing parameter optimal yang berbeda. Optimasi struktur neuron bertujuan untuk mereduksi banyak neuron yang digunakan sehingga dapat mempersingkat waktu komputasi.
Skripsi ini membahas proses pencarian nilai smoothing parameter optimal menggunakan algoritma genetika dan struktur neuron optimal menggunakan algoritma ortogonal dalam sistem pengenal wajah. Terdapat dua jenis teknik optimasi yang akan dibahas, lalu membandingkan hasilnya dengan PNN struktur utuh dan backpropagation. Data wajah yang digunakan berupa foto infra merah dan cahaya tampak.

Optimization of Probabilistic Neural Network (PNN) can be performed to the value of smoothing parameter and neuron structure. Every problem has different value of smoothing parameter. Optimization of neuron structure aims to reduce the number of neurons used, in order to shorten computation time.
This thesis discusses the process of finding the optimal value of smoothing parameter using genetic algorithms and optimal neuron structure using orthogonal algorithms in face recognition system. Two types of optimization techniques which will be discussed, then the results are compared with full structure PNN and backpropagation. Face data used in the form of infrared and visible light images.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S1579
UI - Skripsi Open  Universitas Indonesia Library
cover
Nabila Prihandina Purwanto
"Potensi hidrokarbon di Lapangan 'OZ', Cekungan Bonaparte belum dimanfaatkan karena risiko pengeboran yang tinggi yang disebabkan oleh heterogenitas reservoir. Karena sifat reservoir yang heterogen, maka dilakukan identifikasi dan karakterisasi untuk melihat sebaran litologi dan fluida reservoirnya. Metode Probabilistic Neural Network (PNN) adalah metode utama dalam analisis multi-atribut untuk menemukan hubungan nonlinier antara data seismik dan data sumur di Lapangan 'OZ' dan kemudian menghasilkan model untuk distribusi data sinar gamma, porositas, dan saturasi air dengan nilai koefisien korelasi masing-masing pelatihan sebesar 0,8871, 0,9778, 0,9719 dan koefisien korelasi validasi sebesar 0,7836, 0,8554, 0,8187. Integrasi antara model distribusi data sinar gamma, porositas, saturasi air, ditambah dengan hasil inversi impedansi akustik (AI), dapat menjadi sarana untuk mengklasifikasikan dan mengidentifikasi distribusi reservoir hidrokarbon. Lapangan 'OZ' memiliki karakteristik reservoir yang mengandung gas hidrokarbon dan memiliki litologi batupasir bersih dengan sesar normal sebagai traps serta batupasir rapat dan batuan serpih sebagai seal yang tersebar di bagian Selatan dan Tengah lapangan OZ.
The hydrocarbon potential in the 'OZ' Field, Bonaparte Basin has not been exploited due to the high drilling risk caused by reservoir heterogeneity. Due to the heterogeneous nature of the reservoir, identification and characterization were carried out to see the distribution of lithology and reservoir fluids. The Probabilistic Neural Network (PNN) method is the main method in multi-attribute analysis to find a nonlinear relationship between seismic data and well data in the 'OZ' Field and then generate a model for the distribution of gamma ray, porosity, and water saturation data with the respective correlation coefficient values. -each training is 0.8871, 0.9778, 0.9719 and the validation correlation coefficient is 0.7836, 0.8554, 0.8187. The integration between the distribution model of gamma ray data, porosity, water saturation, coupled with the results of acoustic impedance inversion (AI), can be a means to classify and identify the distribution of hydrocarbon reservoirs. The 'OZ' field has reservoir characteristics containing hydrocarbon gas and has a clean sandstone lithology with normal faults as traps as well as dense sandstone and shale rock as seals which are scattered in the Southern and Central parts of the OZ field."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Ryan Faisal
"Heterogenitas dan kompleksitas menjadi alasan utama reservoir karbonat menawarkan tantangan tersendiri dalam proses karakterisasinya dibandingkan dengan reservoir silisiklastik. Reservoir ini dapat memiliki tipe pori yang bervariasi yang dapat mempengaruhi perubahan nilai Vp hingga sebesar 40%. Variasi tipe pori bergantung pada lingkungan pengendapan dan proses diagenesa dimana tipe pori ini sangat berkorelasi dengan permeabilitas. Differential Effective Medium (DEM) diimplementasikan untuk memodelkan modulus elastis medium efektif dengan mempertimbangkan efek dari kompleksitas pori batuan. Kompleksitas pori ini dalam pemodelan diklasifikasikan menjadi tiga tipe pori geofisika, yaitu stiff pore, interparticle pore, dan microcrack. Model rockphysics hasil pemodelan kemudian digunakan untuk menghitung nilai Vs. Hasil inversi tipe pori menunjukan bahwa daerah penelitian didominasi oleh interparticle dan microcrack. Hasil dari pemodelan 1D kemudian disebarkan ke volume seismik untuk mengetahui distribusi spasial tipe pori. Hasil analisis sensitifitas menunjukan bahwa impedansi akustik, impedansi shear, dan porositas memiliki korelasi yang baik dengan tipe pori. Oleh karena itu Probabilistik Neural Network digunakan untuk menyebarkan tipe pori ke seismik dengan data training berupa impedansi akustik, impedansi shear, dan porositas. Hasil training dengan nilai korelasi 0.92 kemudian diaplikasikan ke seismik. Hasil ini kemudian digunakan untuk interpretasi zona dengan permeabilitas paling baik.

Heterogeneity and Complexity are the main reasons why carbonate reservoirs offer a great challenge for its characterization compared to silisiclastic reservoirs. Carbonate reservoirs are known for its variable pore type and this variability can affect the Vp value up to 40%. Pore type can vary depending on its depositional environment and diagenetic processes and these pore types are highly correlated with permeability. Differential Effective Medium is used to model the elastic modulus of effective medium that takes into account the effect of complexity of rock pore type. This complexity, in modelling, is divided into three geophysical pore types, which are stiff pore, interparticle pore, and microcrack. The resulting rockphysics model is then used to calculate the value of Vs. Pore type inversion shows that the dominant pore types in this study area are interparticle and microcrack. The results of 1D modelling are then distributed to seismic volume to map the spatial distribution of pore type. Sensitivity analysis shows that acoustic impedance, shear impedance, and porosity have a good correlation with pore type. Therefore, Probabilistic Neural Network is used to distribute 1D pore type to seismic volume by using acoustic impedance, shear impedance, and porosity as a training data. The training result, with correlation coefficient of 0.92, is then applied to the seismic volume. The resulting volume is then used to interpret the zones with best permeability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>