Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4 dokumen yang sesuai dengan query
cover
Efron, Bradley
"The jackknife and the bootstrap are nonparametric methods for assessing the errors in a statistical estimation problem. They provide several advantages over the traditional parametric approach: the methods are easy to describe and they apply to arbitrarily complicated situations; distribution assumptions, such as normality, are never made.
This monograph connects the jackknife, the bootstrap, and many other related ideas such as cross-validation, random subsampling, and balanced repeated replications into a unified exposition. The theoretical development is at an easy mathematical level and is supplemented by a large number of numerical examples.
The methods described in this monograph form a useful set of tools for the applied statistician. They are particularly useful in problem areas where complicated data structures are common, for example, in censoring, missing data, and highly multivariate situations."
Philadelphia: Society for Industrial and Applied Mathematics, 1994
e20443362
eBooks  Universitas Indonesia Library
cover
Suci Fitriyani
"Analisis sentimen merupakan studi komputasi untuk menganalisis opini seseorang terhadap suatu entitas yang diekspresikan dalam sebuah teks. Tersedia cukup banyak model machine learning terutama deep learning yang dapat digunakan untuk melakukan analisis sentimen seperti Convolutional Neural Network (CNN) dan Bidirectional Long Short-Term Memory (BiLSTM). Pada dasarnya, model deep learning tidak dapat memproses langsung sebuah data dalam bentuk teks sehingga diperlukan metode untuk mentransformasi teks menjadi tensor numerik seperti word embedding. Pada penelitian ini, diajukan model gabungan CNN-BiLSTM dengan word embedding fastText untuk melakukan analisis sentimen. Model tersebut dilatih menggunakan data tweet berbahasa Indonesia tentang opini masyarakat mengenai rencana subsidi pembelian kendaraan listrik di Indonesia. Data tersebut diklasifikasikan menjadi sentimen positif, negatif, dan netral dan ditemukan bahwa komposisi dari ketiga sentimen tersebut tidaklah seimbang (imbalanced dataset) dimana kelas positif memiliki lebih sedikit data dibanding kelaskelas lainnya. Untuk mengatasi masalah tersebut, digunakan metode resampling SMOTE agar jumlah data pada kelas positif dapat mengimbangi kelas lainnya. Model fastTextCNN-BiLSTM diukur performanya dengan melihat nilai akurasi, precision, recall, dan f1-score. Dari hasil penelitian didapat bahwa model gabungan CNN-BiLSTM memberikan nilai akurasi, precision, recall, dan f1-score yang paling baik dibanding model CNN dan BiLSTM saja. Model-model yang menggunakan word embedding fastText juga memberikan performa yang lebih baik dibanding model tanpa fastText (menggunakan word embedding standar). Secara keseluruhan, model gabungan fastTextCNN-BiLSTM ditemukan memiliki performa yang lebih baik dibandingkan dengan model-model lainnya.
......Sentiment analysis is a computational study to analyze person’s opinion about an entity expressed in text. There are several machine learning models, especially deep learning models that can be used for sentiment analysis, such as Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM). Essentially, deep learning models cannot directly process textual data and they need a method to transform text into numerical tensors such as word embedding. In this research, a hybrid model CNN-BiLSTM with fastText word embedding is proposed for sentiment analysis. The model is trained using Indonesian tweets data regarding public opinions on the plan for subsidizing the purchase of electric vehicles in Indonesia. The data is classified into positive, negative, and neutral sentiments, and it is found that the composition of these sentiments is imbalanced, with the positive class having fewer data compared to the other classes. To address this issue, the SMOTE resampling method is used to balance the data in the positive class with the other classes. The performance of the fastText-CNNBiLSTM model is measured by accuracy, precision, recall, and f1-score. The research results show that the hybrid model CNN-BiLSTM achieves the highest accuracy, precision, recall, and f1-score compared to the single models CNN and BiLSTM. Models with fastText word embedding also outperform models without fastText (with standard word embedding). Overall, the hybrid model fastText-CNN-BiLSTM is found to outperform other models in terms of performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Stenografi is an art and science for hidling secret message into another message. The existence of secret message in unrecognized. Stenografi is a term from greek,steganos, that means hidden message...."
Artikel Jurnal  Universitas Indonesia Library
cover
Barszcz, Tomasz
"This book describes in detail different types of vibration signals and the signal processing methods, including signal resampling and signal envelope, used for condition monitoring of drivetrains. A special emphasis is placed on wind turbines and on the fact that they work in highly varying operational conditions. The core of the book is devoted to cutting-edge methods used to validate and process vibration data in these conditions. Key case studies, where advanced signal processing methods are used to detect failures of gearboxes and bearings of wind turbines, are described and discussed in detail. Vibration sensors, SCADA (Supervisory Control and Data Acquisition), portable data analyzers and online condition monitoring systems, are also covered. This book offers a timely guide to both researchers and professionals working with wind turbines (but also other machines), and to graduate students willing to extend their knowledge in the field of vibration analysis."
Switzerland: Springer Nature, 2019
e20509487
eBooks  Universitas Indonesia Library