Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 60 dokumen yang sesuai dengan query
cover
Mutiara Azzahra
"Indonesia kaya akan warisan budaya, salah satunya adalah aksara Pegon. Aksara ini merupakan sistem penulisan yang berkembang selama penyebaran Islam di nusantara. Warisan budaya ini adalah adaptasi dari aksara Arab yang sering digunakan oleh para ulama Islam dalam penulisan manuskrip di masa lalu. Namun, seiring dominasi aksara Latin di Indonesia, penggunaan aksara Pegon saat ini semakin berkurang, hanya pada kalangan tertentu, sehingga menyebabkan sedikitnya individu yang mampu membaca aksara Pegon. Oleh karena itu, transliterasi antara aksara Pegon ke Latin diperlukan. Penelitian ini berfokus pada pengembangan transliterasi menggunakan pendekatan berbasis data dengan model sequence-to-sequence, mengikuti pedoman transliterasi Arab-Latin dari Kementerian Agama tahun 1987, hasil Kongres Aksara Pegon 2022, dan SNI 9047:2023. Hasil penelitian menunjukkan bahwa pendekatan berbasis data menggunakan metode sequence-to-sequence mencapai akurasi 99.76% dan CER 0.010624 untuk dataset bahasa Sunda dengan model terbaik BiGRU-Att, akurasi 99.31% dan CER 0.029255 untuk dataset bahasa Jawa dengan model terbaik BiGRU-Att, dan akurasi 99.58% dan CER 0.020466 untuk dataset gabungan bahasa dengan model BiLSTM-Att. Dari hasil ini, dapat dikatakan bahwa hasil prediksi tergolong baik dengan nilai akurasi di atas 70%, nilai loss mendekati 0, dan nilai Character Error Rate (CER) mendekati 0 untuk semua dataset.

Indonesia, rich in cultural heritage, includes Pegon script, a writing system that evolved during the spread of Islam in the archipelago. This cultural heritage is an adaptation of the Arabic script often used by Islamic scholars in manuscript writing in the past. However, the current use of Pegon script is less popular compared to the past due to the dominance of the Latin script in Indonesia, resulting in few individuals being able to read Pegon script. Therefore, transliteration between Pegon and Latin scripts is necessary. The research concentrates on developing transliteration using a data-driven approach with sequence-to-sequence models, following the Arabic-Latin transliteration guidelines from the Ministry of Religious Affairs in 1987, the results of the Pegon Script Congress 2022, and SNI 9047:2023. The results show that the data-driven approach using the sequence- to-sequence method achieves an accuracy of 99.76% and a CER of 0.010624 for the Sundanese dataset with the best model BiGRU-Att, an accuracy of 99.31% and a CER of 0.029255 for the Javanese dataset with the best model BiGRU-Att, and an accuracy of 99.58% and a CER of 0.020466 for the combined language dataset with the BiLSTM-Att model. From these results, it can be said that the prediction results are classified as good with accuracy values above 70%, loss values close to 0, and Character Error Rate (CER) values close to 0 for all datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri 'Aliyah
"Indonesia kaya akan warisan budaya, salah satunya adalah aksara Pegon. Aksara ini merupakan sistem penulisan yang berkembang selama penyebaran Islam di nusantara. Warisan budaya ini adalah adaptasi dari aksara Arab yang sering digunakan oleh para ulama Islam dalam penulisan manuskrip di masa lalu. Namun, seiring dominasi aksara Latin di Indonesia, penggunaan aksara Pegon saat ini semakin berkurang, hanya pada kalangan tertentu, sehingga menyebabkan sedikitnya individu yang mampu membaca aksara Pegon. Oleh karena itu, transliterasi antara aksara Pegon ke Latin diperlukan. Penelitian ini berfokus pada pengembangan transliterasi menggunakan pendekatan berbasis data dengan model sequence-to-sequence, mengikuti pedoman transliterasi Arab-Latin dari Kementerian Agama tahun 1987, hasil Kongres Aksara Pegon 2022, dan SNI 9047:2023. Hasil penelitian menunjukkan bahwa pendekatan berbasis data menggunakan metode sequence-to-sequence mencapai akurasi 99.76% dan CER 0.010624 untuk dataset bahasa Sunda dengan model terbaik BiGRU-Att, akurasi 99.31% dan CER 0.029255 untuk dataset bahasa Jawa dengan model terbaik BiGRU-Att, dan akurasi 99.58% dan CER 0.020466 untuk dataset gabungan bahasa dengan model BiLSTM-Att. Dari hasil ini, dapat dikatakan bahwa hasil prediksi tergolong baik dengan nilai akurasi di atas 70%, nilai loss mendekati 0, dan nilai Character Error Rate (CER) mendekati 0 untuk semua dataset.

Indonesia, rich in cultural heritage, includes Pegon script, a writing system that evolved during the spread of Islam in the archipelago. This cultural heritage is an adaptation of the Arabic script often used by Islamic scholars in manuscript writing in the past. However, the current use of Pegon script is less popular compared to the past due to the dominance of the Latin script in Indonesia, resulting in few individuals being able to read Pegon script. Therefore, transliteration between Pegon and Latin scripts is necessary. The research concentrates on developing transliteration using a data-driven approach with sequence-to-sequence models, following the Arabic-Latin transliteration guidelines from the Ministry of Religious Affairs in 1987, the results of the Pegon Script Congress 2022, and SNI 9047:2023. The results show that the data-driven approach using the sequence- to-sequence method achieves an accuracy of 99.76% and a CER of 0.010624 for the Sundanese dataset with the best model BiGRU-Att, an accuracy of 99.31% and a CER of 0.029255 for the Javanese dataset with the best model BiGRU-Att, and an accuracy of 99.58% and a CER of 0.020466 for the combined language dataset with the BiLSTM-Att model. From these results, it can be said that the prediction results are classified as good with accuracy values above 70%, loss values close to 0, and Character Error Rate (CER) values close to 0 for all datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devina Fitri Handayani
"Indonesia kaya akan warisan budaya, salah satunya adalah aksara Pegon. Aksara ini merupakan sistem penulisan yang berkembang selama penyebaran Islam di nusantara. Warisan budaya ini adalah adaptasi dari aksara Arab yang sering digunakan oleh para ulama Islam dalam penulisan manuskrip di masa lalu. Namun, seiring dominasi aksara Latin di Indonesia, penggunaan aksara Pegon saat ini semakin berkurang, hanya pada kalangan tertentu, sehingga menyebabkan sedikitnya individu yang mampu membaca aksara Pegon. Oleh karena itu, transliterasi antara aksara Pegon ke Latin diperlukan. Penelitian ini berfokus pada pengembangan transliterasi menggunakan pendekatan berbasis data dengan model sequence-to-sequence, mengikuti pedoman transliterasi Arab-Latin dari Kementerian Agama tahun 1987, hasil Kongres Aksara Pegon 2022, dan SNI 9047:2023. Hasil penelitian menunjukkan bahwa pendekatan berbasis data menggunakan metode sequence-to-sequence mencapai akurasi 99.76% dan CER 0.010624 untuk dataset bahasa Sunda dengan model terbaik BiGRU-Att, akurasi 99.31% dan CER 0.029255 untuk dataset bahasa Jawa dengan model terbaik BiGRU-Att, dan akurasi 99.58% dan CER 0.020466 untuk dataset gabungan bahasa dengan model BiLSTM-Att. Dari hasil ini, dapat dikatakan bahwa hasil prediksi tergolong baik dengan nilai akurasi di atas 70%, nilai loss mendekati 0, dan nilai Character Error Rate (CER) mendekati 0 untuk semua dataset.

Indonesia, rich in cultural heritage, includes Pegon script, a writing system that evolved during the spread of Islam in the archipelago. This cultural heritage is an adaptation of the Arabic script often used by Islamic scholars in manuscript writing in the past. However, the current use of Pegon script is less popular compared to the past due to the dominance of the Latin script in Indonesia, resulting in few individuals being able to read Pegon script. Therefore, transliteration between Pegon and Latin scripts is necessary. The research concentrates on developing transliteration using a data-driven approach with sequence-to-sequence models, following the Arabic-Latin transliteration guidelines from the Ministry of Religious Affairs in 1987, the results of the Pegon Script Congress 2022, and SNI 9047:2023. The results show that the data-driven approach using the sequence- to-sequence method achieves an accuracy of 99.76% and a CER of 0.010624 for the Sundanese dataset with the best model BiGRU-Att, an accuracy of 99.31% and a CER of 0.029255 for the Javanese dataset with the best model BiGRU-Att, and an accuracy of 99.58% and a CER of 0.020466 for the combined language dataset with the BiLSTM-Att model. From these results, it can be said that the prediction results are classified as good with accuracy values above 70%, loss values close to 0, and Character Error Rate (CER) values close to 0 for all datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
London: Hackensack, New Jersey : World Scientific Publishing Co. , 2016
570.285 BIO
Buku Teks  Universitas Indonesia Library
cover
Dadang Makmun
"We report a case of carcinoma of the esophagus in a 58 years old woman with achalasia, who has been diagnosed since 30 years ago, which initiated by surgical treatment (myotomy) and the symptoms recurred since 3 years ago. According to the progress of the disease, malignancy was strongly suspected due to prolonged stasis and mucosal irritation caused by achalasia (achalasia carcinoma sequence). Because of these contributing factors for the development of serious complications such as malignancy the diagnosis of achalasia must be systematically diagnosed and treated agressively. Surveillance endoscopy in patients with achalasia should be performed every 1-2 years."
Jakarta: The Indonesian Journal of Gastroenterology Hepatology and Digestive Endoscopy, 2001
IJGH-2-3-Des2001-28
Artikel Jurnal  Universitas Indonesia Library
cover
Novi Murniati
"DNA Sequencing by Hybridization (DNA SBH) adalah suatu proses pembentukan barisan nukleotida suatu rantai DNA dari kumpulan fragmen yang disebut spektrum. Spektrum tersebut diperoleh dari proses biokimia yang disebut hibridisasi. DNA SBH dapat dipandang sebagai masalah optimisasi yang dapat diselesaikan dengan menggunakan algoritma genetik. Prinsip kerja algoritma genetik berdasarkan pada teori evolusi Charles Darwin. Pada skripsi ini akan dibahas penerapan kinerja algoritma genetik pada DNA SBH. Terdapat tiga tahapan penting dalam algoritma genetik, yakni proses seleksi, crossover, dan mutasi. Jenis metode yang digunakan pada proses seleksi, crossover, dan mutasi secara berturut-turut adalah metode yang merupakan kombinasi antara roulette wheel dan deterministic, structured crossover, dan swap mutation. Kinerja algoritma genetik akan diuji dengan menggunakan data dari Gen Bank dan masalah DNA SBH yang dibuat secara acak. Selain itu juga akan dilihat pengaruh perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) terhadap kinerja algoritma genetik untuk DNA SBH. Berdasarkan hasil percobaan diperoleh bahwa algoritma genetik cukup baik digunakan pada DNA SBH. Selain itu, perubahan nilai probabilitas crossover (c) dan probabilitas mutasi (m) ternyata mempengaruhi kinerja algoritma genetik dalam memperoleh solusi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Graves, Alex
"The goal of this book is a complete framework for classifying and transcribing sequential data with recurrent neural networks only. Three main innovations are introduced in order to realise this goal. Firstly, the connectionist temporal classification output layer allows the framework to be trained with unsegmented target sequences, such as phoneme-level speech transcriptions, this is in contrast to previous connectionist approaches, which were dependent on error-prone prior segmentation. Secondly, multidimensional recurrent neural networks extend the framework in a natural way to data with more than one spatio-temporal dimension, such as images and videos. Thirdly, the use of hierarchical subsampling makes it feasible to apply the framework to very large or high resolution sequences, such as raw audio or video."
Berlin: [, Springer], 2012
e20398893
eBooks  Universitas Indonesia Library
cover
Adimas Putra Pratama Hendrata
"Masuknya industri 4.0 di Indonesia membuat mesin dapat terintegrasi dengan komputer melalui perangkat IoT sehingga membuat proses produksi lebih efisien. Salah satu upaya untuk mempertahankan hal tersebut adalah dengan melakukan maintenance menggunakan metode predictive maintenance. Kegagalan mesin dalam predictive maintenance dapat diprediksi menggunakan machine learning. Metode sequence processing adalah algoritma machine learning yang cocok digunakan dalam predictive maintenance berbasis timeseries. Penelitian ini mencoba berbagai macam cara penerapan sequence processing untuk memprediksi kegagalan pada mesin. LSTM merupakan metode sequence processing yang populer digunakan untuk predictive maintenance. Terdapat tiga cara penerapan model LSTM yang diuji pada penelitian ini, yaitu model klasifikasi, regresi, dan regresi menggunakan sequence to sequence Ketiga model tersebut akan diuji menggunakan data yang didapat dari database terbuka. Setiap model akan dievaluasi dan dikomparasi untuk mengetahui model yang terbaik. Penelitian ini menunjukkan bahwa model klasifikasi memiliki kinerja yang buruk karena mengalami overfitting. Sementara itu, model regresi sequence to sequence memiliki kinerja yang paling baik, yaitu dengan nilai f-1 score mencapai 57.45%.

The implementation of Industry 4.0 in Indonesia enables machines to be integrated with computers through IoT devices, resulting in more efficient production processes. One of the efforts to maintain this is by performing maintenance using predictive maintenance methods. Machine learning can be used to predict machine failures in predictive maintenance. Sequence processing is a suitable machine learning algorithm for predictive maintenance based on timeseries data. This research explores various ways to apply sequence processing for predicting machine failures. LSTM is a popular sequence processing method used in predictive maintenance. Three approaches for implementing LSTM models were tested in this study: classification, regression, and sequence to sequence regression. These models were tested using data obtained from an open database. Each model was evaluated and compared to determine the best-performing model. The research findings indicate that the classification model performed poorly due to overfitting. On the other hand, the sequence to sequence regression model achieved the best performance, with an f-1 score of 57.45%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
"There is little information how to identify hydrocarbon degrading bacteria for bioremediation of marine oil spills. We
have used gravel which contaminated oil mousse from Beach Simulator Tank, in Marine Biotechnology Institute,
Kamaishi, Japan, and grown on enrichment culture. Biostimulation with nutrients (N and P) was done to analyze
biodegradation of hydrocarbon compounds: Naphthalene, Phenanthrene, Trichlorodibenzofuran and Benzo[a]pyrene.
Community of bacteria from enrichment culture was determined by DGGE. Isolating and screening the bacteria on
inorganic medium contain hydrocarbon compounds and determination of bacteria by DAPI (number of cells) and CFU.
DNA was extracted from colonies of bacteria and sequence determination of the 16S rDNA was amplified by primers
U515f and U1492r. Twenty nine strains had been sequence and have similarity about 90-99% to their closest taxa by
homology Blast search and few of them have suspected as new species."
Lembaga Penelitian Universitas Indonesia, 2007
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6   >>