Perkembangan teknologi pemrosesan ucapan sangat pesat akhir-akhir ini. Namun, fokus penelitian dalam Bahasa Indonesia masih terbilang sedikit, walaupun manfaat dan benefit yang dapat diperoleh sangat banyak dari pengembangan tersebut. Hal tersebut yang melatarbelakangi dilakukan penelitian ini. Pada penelitian ini digunakan model transfer learning (Inception dan ResNet) dan CNN untuk melakukan prediksi emosi terhadap suara manusia berbahasa Indonesia. Kumpulan data yang digunakan dalam penelitian ini, diperoleh dari berbagai film dalam Bahasa Indonesia. Film-film tersebut dipotong menjadi potongan yang lebih kecil dan dilakukan dua metode ekstraksi fitur dari potongan audio tersebut. Ekstraksi fitur yang digunakan adalah Mel-Spectrogram dan MelFrequency Cepstral Coefficient (MFCC). Data yang diperoleh dari kedua ekstraksi fitur tersebut dilatih pada tiga model yang digunakan (Inception, ResNet, serta CNN). Dari percobaan yang telah dilakukan, didapatkan bahwa model ResNet memiliki performa yang lebih baik dibanding Inception dan CNN, dengan rata-rata akurasi 49%. Pelatihan model menggunakan hyperparameter dengan batch size sebesar 16 dan dropout (0,2 untuk Mel-Spectrogram dan 0,4 untuk MFCC) demi mendapatkan performa terbaik.
Speech processing technology advancement has been snowballing for these several years. Nevertheless, research in the Indonesian language can be counted to be little compared to other technology research. Because of that, this research was done. In this research, the transfer learning models, focused on Inception and ResNet, were used to do the speech emotion recognition prediction based on human speech in the Indonesian language. The dataset that is used in this research was collected manually from several films and movies in Indonesian. The films were cut into several smaller parts and were extracted using the Mel-Spectrogram and Mel-frequency Cepstrum Coefficient (MFCC) feature extraction. The data, which is consist of the picture of Mel-spectrogram and MFCC, was trained on the models followed by testing. Based on the experiments done, the ResNet model has better accuracy and performance compared to the Inception and simple CNN, with 49% of accuracy. The experiments also showed that the best hyperparameter for this type of training is 16 batch size, 0.2 dropout sizes for Mel-spectrogram feature extraction, and 0.4 dropout sizes for MFCC to get the best performance out of the model used.
Kecerdasan buatan atau Artificial Intelligence (AI) banyak berkembang dalam sektor-sektor seperti: speech recognition, computer vision, Natural Language Processing, dll. Salah satu sektor penting yang banyak dikembangkan oleh peneliti adalah Speech Emotion Recognition atau pengenalan emosi berdasarkan suara manusia. Penelitian ini semakin berkembang karena timbul sebuah tantangan bagi manusia untuk memiliki interaksi mesin dan manusia yang lebih natural yaitu suatu mesin yang dapat merespon emosi manusia dengan memberikan balasan yang tepat juga. Perancangan Speech Emotion Recognition pada penelitian ini menggunakan dataset berupa fitur ekstraksi audio MFCC, Spectrogram, Mel Spectrogram, Chromagram, dan Tonnetz serta memanfaatkan metode Transfer Learning VGG-16 dalam pelatihan modelnya. Dataset yang digunakan diperoleh dari pemotongan audio dari beberapa film berbahasa Indonesia dan kemudian audio yang diperoleh diekstraksi fitur dalam kelima bentuk fitur yang disebut sebelumnya. Hasil akurasi model paling baik dalam penelitian ini adalah model transfer learning VGG-16 dengan dataset Mel Spectrogram yaitu dengan nilai akurasi 56.2%. Dalam pengujian model dalam pengenalan setiap emosi, f1-score terbaik diperoleh model transfer learning VGG-16 dengan dataset Mel Spectrogram dengan f1-score yaitu 55.5%. Skala mel yang diterapkan pada ekstraksi fitur mel spectrogram berpengaruh terhadap baiknya kemampuan model dalam mengenali emosi manusia.
Artificial Intelligence has been used in many sectors, such as speech recognition, computer vision, Natural Language Processing, etc. There was one more important sector that has been developed well by the scientists which are Speech Emotion Recognition. This research is developing because of the new challenge by human to have a better natural interaction between machines and humans where machines can respond to human’s emotions and give proper feedback. In this research, to create the speech emotion recognition system, audio feature extraction such as MFCC, Spectrogram, Mel Spectrogram, Chromagram, and Tonnetz were used as input, and using VGG-16 Transfer Learning Method for the model training. The datasets were collected from the trimming of audio from several Indonesian movies, the trimmed audio will be extracted to the 5 features mentioned before. The best model accuracy is VGG-16 with Mel Spectrogram dataset which has reached 56.2% of accuracy. In terms of recognizing the emotion, the best f1-score is reached by the model VGG-16 with Mel Spectrogram dataset which has 55.5% of f1-score. Mel scale that is applied to the feature extraction of mel spectrogram affected the model’s ability to recognize human emotion.
Emosi merupakan hal penting yang dimiliki oleh manusia. Banyak riset yang sudah dilakukan untuk menganalisis emosi seseorang secara langsung maupun tidak langsung. Salah satu topik dari machine learning yang berkembang adalah sistem yang mampu mempelajari isi suara manusia untuk menentukan emosi seseorang yang dinamakan speech emotion recognition. Banyak riset yang sudah dilakukan masih menggunakan dataset berbahasa Inggris, untuk itu diperlukan penelitian speech emotion recognition dengan menggunakan dataset berbahasa Indonesia. Pada penelitian ini dilakukan analisa speech emotion recognition menggunakan 4 model berbeda yaitu Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), dan Logistic Regression (LR). Penelitian ini dilakukan dengan menggunakan hasil ekstraksi dari Mel-frequency Cepstral Coefficient (MFCC) yang dimasukkan ke dalam bentuk matriks 2D sebagai input menuju model percobaan. Dataset yang digunakan merupakan cuplikan dialog berbahasa Indonesia dengan karakteristik emosi tertentu yang sudah dikelompokkan terlebih dahulu. Dari percobaan yang telah dilakukan, didapatkan hasil bahwa model SVM memiliki tingkat rata-rata akurasi tertinggi jika dibandingkan dengan model lainnya, yaitu sebesar 59%. Sedangkan untuk model LR, KNN, dan CNN didapatkan tingkat akurasi rata-rata secara berurutan sebesar 54,5%; 53,5%; dan 47,7%.
Emotions are important things in human life. A lot of research had been done to analyze persons' emotions directly or indirectly. One of the topics of machine learning that is developing is a system that could understand the content of the human voice to determine a person's emotions called speech emotion recognition. Much of the research that had been done still uses English datasets. Therefore, speech emotion recognition research using Indonesian language datasets is needed. In this study, Speech Emotion Recognition analysis was performed using 4 different models, such as Convolutional Neural Network (CNN), Support Vector Machines (SVM), K-Nearest Neighbor (KNN), and Logistic Regression (LR). This study was conducted using the extraction outputs from the Mel-frequency Cepstral Coefficient (MFCC) which was converted into a 2D matrix. The output would be used as an input to the model. The dataset used was a snippet of Indonesian dialogue with several emotional characteristics that had been grouped. Based on this study, the results showed that the SVM model had the highest average level of accuracy around 59%. Meanwhile, for the LR, KNN, and CNN models, the average accuracy rate were 54.5%; 53.5%; and 47.7%.