Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2 dokumen yang sesuai dengan query
cover
Muhammad Hanif Fajari
Abstrak :
Penyakit coronavirus 2019 (COVID-19) merupakan penyakit yang disebabkan oleh severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Penyakit ini dapat menular melalui cairan yang berasal dari hidung atau mulut penderita. Simulasi penambatan molekul dengan PyRx memprediksi senyawa Teofilin dan Dexamethason dapat berinteraksi baik dengan spike glikoprotein S2 SARS-CoV 2, dengan ΔGbinding yang diperoleh adalah berturut-turut sebesar -6,3; -7,8; -8,1 kcal/mol melalui nteraksi pada residu Ala348, Arg357 dan Val341. Sehingga dapat disimpulkan bahwa Teofilin dan Dexamethason memiliki potensi untuk dijadikan agen pengenal SARS-CoV 2. Namun simulasi dengan penambatan molekul juga menunjukan bahwa hemagglutinin (HA) H1N1 berpotensi menganggu pengukuran spike glikoprotein SARS-CoV 2. Hasil studi komputasi ini menjadi acuan untuk pengujian potensi Teofilin dan Dexamethason sebagai agen pengenal SARS-CoV 2 dengan HA H1N1 sebagai uji interferensi. Selanjutnya Studi elektrokimia dengan teknik voltametri siklik menggunakan elektroda boron-doped diamond (BDD) pada Teofilin menunjukkan puncak arus oksidasi pada potensial +0,506 V dan puncak arus reduksi pada potensial -0,5 V. Arus yang dihasilkan linear pada rentang konsentrasi 10 μM sampai 100 μM. Deteksi spike glikoprotein S2 SARS-CoV 2 dilakukan dengan melihat penurunan arus oksidasi Teofilin dengan kehadiran spike glikoprotein S2 SARS-CoV 2 dan virus kultur SARS- CoV 2 pada waktu optimum 10 menit. Penurunan arus linier pada rentang konsentrasi 1 ng/mL sampai 200 ng/mL. Sedangkan Dexamethason tidak elektroaktif namun pengukuran dengan spektrofotometri UV-Vis menunjukkan puncak absorbansi pada bilangan gelombang 241 nm. ......Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This disease can be transmitted through droplets from the nose or mouth of the patient. Molecular docking simulation with PyRx predicts Theophylline and Dexamethason compounds can interact well with the spike glycoprotein S2 SARS-CoV 2, with Gbindings obtained are -6.3, respectively; -7.8; -8.1 kcal/mol via interaction with residues Ala348, Arg357 and Val341. So that theophylline and dexamethason have the potential to be used as SARS-CoV 2 identification agents. However, simulations with molecular docking also show that hemagglutinin (HA) H1N1 has the potential to interfere with the measurement of the SARS-CoV 2 spike glycoprotein with bioactive compounds. The results of this computational study serve as a reference for testing potential Theophylline and Dexamethasone as identification agents for SARS-CoV 2 and HA H1N1 as an interference compound. Furthermore, electrochemical studies using cyclic voltammetry techniques using boron-doped diamond (BDD) electrodes on theophylline showed peak oxidation currents at +0.548  V potential and peak reduction currents at -0.5 V potentials. The resulting currents were linear in the concentration range of 10 M to 100 M. Detection of spike glycoprotein S2 SARS-CoV 2 was carried out by observing a decrease in the oxidation current of Theophylline in the presence of spike glycoprotein S2 SARS-CoV 2 and cultured virus SARS-CoV 2 at the optimum time of 10 minutes. Linearity current decrease in the concentration range of 1 ng/mL to 200 ng/mL. Meanwhile, Dexamethasone is not electroactive, but measurements using UV-Vis spectrophotometry show the absorbance peak at a wave number of 241 nm. This absorbance is linear in the concentration range of 10 M to 200 M. Detection of spike glycoprotein S2 SARS-CoV 2 with Dexamethasone was carried out by decreasing absorbance in the presence of spike glycoprotein S2 SARS-CoV 2. at the optimum time of 10 minutes. Linearity current decrease in the concentration range of 1 ng/mL to 200 ng/mL. Furthermore, the interference test performed with HA-H1N1 and spike glycoprotein S2 SARS-CoV 2 showed that neither the current in theophylline nor the peak absorption of Dexamethasone changed significantly. These results indicate Theophylline and Dexamethasone are selective against the SARS-CoV 2 spike glycoprotein S2 and can be applied as identification agents on the SARS-CoV 2 spike glycoprotein S2 sensor.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manaman
Abstrak :
SARS-CoV-2 merupakan penyebab COVID-19 yang melanda dunia sejak akhir 2019. Virus ini telah menyebar secara luas di dunia akibat infektifitasnya yang tinggi. Salah satu penyebab tingginya infektifitas virus ini adalah spike glycoprotein. Spike glycoprotein merupakan salah satu protein yang terdapat pada SARS-CoV-2. Spike glycoprotein berperan secara langsung alam mekanisme infeksi dengan cara membentuk ikatan dengan reseptor ACE-2 pada sel inang. Inhibisi spike glycoprotein dapat menjadi salah satu cara pengobatan COVID-19. Dalam penelitian ini, antivirus yang sudah dipasarkan sebagai basis data akan di-repurpose menjadi antivirus SARS-CoV-2, kemudian dilakukan modifikasi terhadap senyawa yang terpilih menjadi senyawa organoselen. Penelitian dilakukan dengan cara in silico. Untuk simulasi molecular docking, digunakan software MOE2014.09 untuk mendapatkan informasi tentang interaksi antara spike glycoprotein dengan ligan, baik antivirus maupun antivirus hasil modifikasi. Melalui analisa nilai energi pengikatan dan uji farmakologi, diperoleh 3 ligan terbaik dari antivirus (Ombitasvir, Elbasvir, dan Ledipasvir) serta antivirus modifikasi (ModL1, ModL2, dan ModL6). ......SARS-CoV-2 is the cause of COVID-19 that has hit the world since the end of 2019. This virus has spread widely in the world due to its high infection. One of the causes of the high infectivity of this virus is the spike glycoprotein. The spike glycoprotein is a protein found in SARS-CoV-2. The glycoprotein spike directly plays a role in the infection mechanism by forming a bond with the ACE-2 receptor on the host cell. Inhibition of spike glycoprotein can be one way of treating COVID-19. In this study, the antivirals that have been marketed as databases will be repurposed into SARS-CoV-2 antivirals, then the selected compounds will be modified into organoselenium compounds. The research was conducted through in silico. The molecular docking simulation was conducted by using MOE2014.09 to retrieve information about the interaction between the protein-ligand from unmodified antivirus as well as modified antivirus. Through the binding energy value and pharmacological tests, the three best ligands are obtained from the unmodified antivirus (Ombitasvir, Elbasvir, and Ledipasvir) and the modified antivirus (ModL1, ModL2, and ModL6).
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library