Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Chris Wadhana Setyanta
"Metode Recovery by Equilibrium in Parches adalah metode pemulihan solusi gaya dalam metode elemen hingga yang diperkenalkan oleh B Boroomand. Metode ini merupakan metode pemulihan superconvergent dengan menggunakan patch sebagai media perhitungan seperti juga halnya metode Superconvergent Patch Recovery (SPR) yang sudah lebih dulu dikenal sebagai metode pemulihan dengan kinerja bagus. Dalarn penelitian ini dilakukan uji numerik implementasi metode tersebut dalam mengestimasi error metode elemen hingga untuk pelat lentur dengan elemen DKMQ. Uji numerik dilakukan dengan penghalusan jaringan elemen (mesh) tipe-h secara seragam dan adaptif. Pengujian tersebut dibandingkan dengan tiga metode pemulihan gaya dalam lainnya yaitu metode SPR, metode rata-rata langsung, dan metode proyeksi.
Penulis menggunakan program UI-FEAP sebagai program utama untuk melakukan uji numerik. Program tersebut telah disertai subrutin formulasi elemen DKMQ dan Error Estimator Z2 yang ditulis dalam bahasa FORTRAN hasil penelitian peneliti lain sebelumnya. Penulis menambahkan subrutin yang terkait dengan perhitungan metode REP.

Recovery by Equilibrium in Patches (REP) is a recovery method introduced by B Boroomand. This method is using patch as recovery media as is used by Superconvergent Patch Recovery (SPR) which is well known as a good recovery method. In this research, a numerical study of REP implementation is held to estimate error in finite element analysis using DKMQ element. The numerical study is performed with both uniform and adaptive h-type mesh refinement. The result is compared with three other recovery method, i.e. SPR method, averaging method, and projection method.
UI-FEAP program is used as main program in the numerical study. The program has been enriched with DKMQ and Z2 error estimator subroutines written in FORTRAN programming language by other researcher. The author added subroutines related to REP method."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T21264
UI - Tesis Membership  Universitas Indonesia Library
cover
Imam Jauhari Maknun
"This paper presents an application of the Discrete Kirchhoff-Mindlin Triangular (DKMT) element for error estimation in composite structures. The DKMT element passed the patch tests and gave good results in many plate bending applications. The DKMT element formulation in composite application uses the same technique as the Discrete Kirchhoff-Mindlin Quadrilateral (DKMQ) composite introduced. The benchmark tests for composite plates have been analyzed, as validation, using the methods employed by Srinivas (1973) and Pagano (1970). The DKMT plate bending element gave a good performance in convergence tests and can be used as one of tools in analyzing composite structures. Moreover, error estimation using various recovery methods such as Averaging, Projection and Superconvergent Patch Recovery (SPR) has been studied. All recovery methods used give similar results."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:5 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Lubis, Antoni Bodwan
"Salah satu metode pemulihan solusi gaya dalam metode elemen hinggayang paling baru adalah metode Polynomial Preserving Recovery (PPR) yang diperkenalkan oleh Zhang (2004). Metode PPR merupakan metode pemulihan superconvergent dengan menggunakan patch sebagai media perhitungan seperti yang juga digunakan dalam metode Superconvergent Patch Recovery (SPR) yang sudah lebih dulu dikenal sebagai metode pemulihan dengan kinerja bagus.
Uji numerik implementasi metode tersebut perlu dilakukan dalam mengestimasi error metode elemen hingga untuk pelat lentur dengan elemen MITC. Dalam penelitian ini uji numerik akan dilakukan dengan penghalusan jaringan elemen (mesh) tipe-h secara seragam dan adaptif. Hasil pengujian tersebut akan dibandingkan dengan tiga metode pemulihan gaya dalam lainnya yaitu metode SPR, metode REP, metode rata-rata langsung, dan metode proyeksi.
Program utama yang akan digunakan dalam penelitian ini untuk melakukan uji numerik dimaksud adalah program UI-FEAP yang telah disertai subrutin formulasi elemen MITC dan Error Estimator Z2 yang ditulis dalam bahasa FORTRAN hasil penelitian peneliti lain sebelumnya. Penulis menambahkan subrutin yang terkait dengan perhitungan metode PPR.
......One of the newly-published recovery methods in finite element method is the Polynomial Preserving Recovery (PPR) introduced by Zhang (2004). It is a superconvergent recovery method using patch as recovery media as done by Superconvergent Patch Recovery (SPR), which has been well known as a good recovery method.
A numerical study of the implementation of this method shall be carried out to estimate error in finite element analysis using MITC element. In this research, the numerical study will be performed by both uniform and adaptive h type mesh refinement. The result will be compared with three other recovery methods, i.e. SPR method, REP method, averaging method, and projection method. The main program to be used in the numerical study will be the UI-FEAP program, which has been enriched with MITC and Z2 error estimator subroutines written in FORTRAN programming language by other researchers. The subroutines related to PPR method shall be added in this regard.;One of the newly-published recovery methods in finite element method is the Polynomial Preserving Recovery (PPR) introduced by Zhang (2004). It is a superconvergent recovery method using patch as recovery media as done by Superconvergent Patch Recovery (SPR), which has been well known as a good recovery method.
A numerical study of the implementation of this method shall be carried out to estimate error in finite element analysis using MITC element. In this research, the numerical study will be performed by both uniform and adaptive h type mesh refinement. The result will be compared with three other recovery methods, i.e. SPR method, REP method, averaging method, and projection method. The main program to be used in the numerical study will be the UI-FEAP program, which has been enriched with MITC and Z2 error estimator subroutines written in FORTRAN programming language by other researchers. The subroutines related to PPR method shall be added in this regard."
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26676
UI - Tesis Open  Universitas Indonesia Library