Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9 dokumen yang sesuai dengan query
cover
Agus Yogianto
Abstrak :
ASBTRAK
Pada pengoperasian unit pembangkit PLTU, salah satu variabel proses yang dikendalikan adalah suhu uap keluar superheater atau suhu uap yang akan masuk ke turbin (main steam temperature).

Pada Tesis ini dilakukan pemodelan maematis dari suatu sistem superheater yang memberikan suatu model plant satu masukan satu keluaran, yaitu hubungan antara suhu uap keluar superheater dengan alliran air pacar sebagai variabel masukan. Gangguan atau perubahan parameter model plant pada superheater adalah masalah yang dihadapi pada pemakaian pengendalian konvesional. Untuk itu dirancang dan diaplikasikan pengendalian swatala metoda penempatan kutub, untuk menagtasi maslaah tersebut. pada simulasi ditunjukkan kemampuan pengendalian swatala sebagai regulator dalam menagtasi gangguan serta dinamiaknya bila terjadi perubahan set point yang kecil

Hasil simulasi menunjukkan bahwa pengendali swatala metoda penempatan kutub, dapat dipakai untuk mengendalian suhu uap superheater pada daerah operasi yang terbatas
1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dikaimana, Yophie
Depok: Fakultas Teknik Universitas Indonesia, 2002
S37702
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajri Yunaldi
Abstrak :
Penelitian tentang remaining life RL pada industri bermanfaat bagi penentuan strategi pemeliharaan untuk menghindari kegagalan peralatan secara tiba-tiba dan mempunyai resiko operasional besar. Metode RL dikembangkan untuk memberikan prediksi RL yang akurat. Penelitian ini memberikan prediksi RL pada high pressure super heater tube yang dihitung dengan metode konvensional, metode creep rupture test dan metode scale growth. Data sampel 1Cr-0.5Mo Super heater tube diambil dari dua heat recovery steam generator HRSG yang sejenis. Metode konvensional menggunakan trending analysis data ketebalan aktual tube. Data ketebalan aktual diambil dari pengukuran inspeksi terkahir dan data riwayat inspeksi saat periode pemeliharaan sebelumnya. RL dihasilkan dengan ekstrapolasi trending line ke minimum wall thickness MWT yang dihitung dari standard ASME I PG 27. Creep rupture test dilakukan pada sampel high pressure super heater tube. RL dihasilkan dengan mengevaluasi time to rupture dari persamaan Larson Miller Parameter yang dikenal sebagai metode RL pada komponen temperatur tinggi. Metode scale growth menggunakan cumulative creep damage untuk memprediksi waktu kegagalan tube. Perbedaan antara prediksi waktu kegagalan dan waktu inspeksi terakhir menjadi prediksi RL. Berdasarkan metode konvensional, laju penipisan ketebalan tube berbeda-beda pada setiap posisi. RL yang dihasilkan berbeda-beda untuk ketiga metode. Perbedaan RL sebagai verifikasi dan analisis bersama dengan data dimensi dan sifat mekanik material uji. ......The purpose of remaining life RL research is beneficial for maintenance strategy in industries to avoid unexpected failure which brings to high operational risk. Appropriate method is built to find out close RL prediction for equipment. This paper is present RL prediction of high pressure super heater tube between conventional, creep rupture test and scale growth method. 1Cr 0.5Mo Super heater tube specification was taken from two typical heat recovery steam generator HRSG as a sample. Conventional method use reasonable trending analysis of actual wall thickness tube data. Actual thickness data was taken on last inspection and historical inspection data. RL is yield by extrapolating data to minimum wall thickness MWT which calculated form ASME I PG 27 as standard. Creep rupture test conducted towards sampling tube which was taken from high pressure super heater bundle tubes. RL is yield as evaluation time to rupture of Larson Miller Parameter equation which already known as RL evaluation on high temperature component. Scale growth method use cumulative creep damage to predict time to failure of operated tube. The difference between time to failure and last inspection hour become RL prediction. Based on conventional method, tubes wall thinning rate are variable for each position. The remaining life gives very different between three those methods. The differences bring to discussion as verification and analysis with dimensional and mechanical properties as additional data.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T51219
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulthoni Akbar
Abstrak :
ABSTRAK Penelitian ini difokuskan pada studi degradasi material tube boiler secondary superheater (SSH) pada pembangkit listrik. Material baja karbon rendah 2.25Cr-1Mo mengalami kerusakan retak terbuka selang 26 jam setelah tes ujicoba. Material yang mengalami kerusakan, dianalisis secara fisik dan mekanik menggunakan uji metalografi, uji komposisi kimia, Scanning electon microscopy- Energy Dispersive X-ray Spectroscopy (SEM-EDX), uji kekerasan dan uji tarik, kemudian dibandingkan dengan material baru dan lama. Struktur mikro tube rupture mengalami elongasi searah keliling lingkaran tube dan retak mikro pada batas butir mengindikasikan adanya tegangan yang melebihi kemampuan material. Hasil perhitungan tegangan (hoop stress) sebesar 42,47 MPa, melebihi nilai yang diijinkan sebesar 23,5 MPa pada maksimum temperatur metal tube 605 °C. Material mengalami degradasi saat tercapai temperatur tertinggi (overheating), dan terjadi dalam waktu singkat. Pada tube lama, degradasi terjadi karena perubahan struktur mikro perlit menjadi speroidisasi karbida yang terdekomposisi dan terdispersi pada matrik ferit. Perubahan ini terjadi karena material terekspos dalam rentang waktu lama pada lingkungan temperatur tinggi.
ABSTRACT This research focused on the study of material degradation of tube boiler secondary superheater (SSH) in power plant. Low carbon steel 2.25Cr-1Mo are wide open ruptured in 26 hours after the running test. Samples were analyzed with physical and mechanical tests using metallographic, chemical composition, scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX), hardness and tensile test and compared with virgin and old tube. Microstructure of rupture tube undergo elongation direction of the circumference tube and micro cracks at grain boundaries indicates a stress that exceeds the ability of the material. The stress calculations (hoop stress) of 42.47 MPa, exceeding the allowable stress of 23.5 MPa at maximum metal tube temperature of 605 °C. In the old tube, degradation occurs due to changes in the microstructure into pearlite spheroidizing carbides are decomposed and dispersed in the ferrite matrix. This change occurs because the material is exposed in a long time at high temperature environment.
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45384
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
Electric power plant system design in oil palm factory should consider the contunuity and quality of power supply, reliability of all equipments and its safety and economical value of the system...
Artikel Jurnal  Universitas Indonesia Library
cover
Marjo
Abstrak :
Penelitian yang dilakukan untuk tugas akhir ini menggunakan miniatur Pembangkit Listrik Tenaga Uap (PLTU) ini diproduksi oleh SNM (Shin Nippon Machinery) dengan TIPE 100-SCR. PLTU ini mampu menghasilkan daya listrik sebesar 450 Watt dengan kapasitas uap maksimum 130 kg/jam. Penelitian ini dilakukan bersama dengan Wawan Mardiyanto dengan masing¬masing menganalisa karakteristik PLTU pada titik pengaturan temperatur superheater yang ditentukan yaitu pada 205oC dan 215°C. Tujuan penulisan tugas akhir ini adalah untuk mengetahui karakteristik dan performance PLTU 450 Watt dengan kondisi pengaturan temperatur superheater 205°C. Pengujian dilakukan dengan cara mengoperasikan PLTU 450 pada pengaturan temperature superheater 205°C dengan variasi pembebanan 100 Watt, 200 Watt, 300 Watt dan 450 Watt. Dari data hasil pengujian yang diperoleh kemudian di plot pada diagram h-s, T-s dan p-h untuk mengetahui karakteristik PLTU. Setelah dilakukan perhitungan pada beban puncak (450 W), diperoleh effisiensi thermal yang kecil yaitu sebesar 3,88%. Kenaikan temperatur pada superheater tidak sebanding dengan kenaikan effisiensi thermal system. Hal ini dapat dilihat pada diagram h-s dan T-s dan p-h dimana terjadi losses pada saat uap dialirkan dari boiler menuju superheater sebesar 0,4 kJ/kg dan dari superheater menuju turbin sebesar 78 kJ/kg. ......The research for this thesis uses miniature Steam Power (power plant) was produced by the SNM (Shin Nippon Machiner y) with TYPE 100-SCR. This power plant capable of producing electrical power of 450 Watts with maximum steam capacity of 130 kg / hour. This research was conducted jointl y with Henry Mardiyanto to analyze the characteristi cs of each plant at the point of superheater temperatur e setting thatis prescribed at 205°C and 215°C. The purpose of this thesis is to investi gate the characteristi cs and performance of 450 Watt power plant with superheater temperature setting conditi ons 205°C. Testi ng is done by operati ng the power plant superheater 450 at 205oC temperature settings with variations of loading 100 Watt, 200 Watt, 300 Watt and 450 Watt. From the test result data obtained later in the plot on the diagram hs, Ts and ph to characterize power plant. After doing the calculati ons at peakload (450 W), obtained by a small thermal efficiency that is equal to 3.88%. The increase in temperature at the superheater is not proporti onal to the increase in thermal efficiency system. This can be seen in the hs diagram and Ts and ph where losses occur at steam drained from the boiler to the superheater by 0.4 kJ /kg and from the superheater to the turbine by 78 kJ / kg.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S770
UI - Skripsi Open  Universitas Indonesia Library
cover
Wawan Mardiyanto
Abstrak :
Penelitian yang dilakukan untuk tugas akhir ini menggunakan miniatur Pembangkit Listrik Tenaga Uap (PLTU) ini diproduksi oleh SNM (Shin Nippon Machinery) dengan TIPE 100-SCR. PLTU ini mampu menghasilkan daya listrik sebesar 450 Watt dengan kapasitas uap maksimum 130 kg/jam. PLTU ini sudah 10 tahun tidak beroperasi, sehingga banyak sekali masalah¬masalah yang terjadi dan menyebabkan alat ini tidak dapat beroperasi dengan baik. Dengan adanya penelitian ini, maka beberapa permasalahan yang ada kemudian diselesaikan. Beberapa tindakan yang dilakukan yaitu mengganti distributor pipe dan kawat kasa pada cooling tower, memasang penutup cooling tower, melapisi tangki kondensat dengan cara hot deep, pemasangan selang dan pipa air yang menghubungkan saluran keluar pendingin bearing dengan cooling tower, pemasangan selang kompresor, pemasangan jalur aliran air dan uap, pemasangan kode untuk alat ukur dan valve. Kerugian dalam suatu PLTU salah satunya adalah pemanfaatan energi kalor yang masih sangat kecil. Untuk mengoptimalkan kinerja dari PLTU maka dilakukan pengujian dengan cara memvariasikan temperatur yang keluar dari superheater terhadap beban listrik. Titik pengaturan temperatur superheater ditentukan yaitu pada 205°C dan 215°C. Hal tersebut dilakukan agar dapat diketahui karakteristik dari PLTU. Sehingga didapatkan suatu kondisi dimana pada saat beban tertentu maka kita dapat melakukan pengaturan pada temperatur keluar superheater sehingga kinerja PLTU secara keseluruhan menjadi optimal. Dari dua hasil studi kasus yang telah dilakukan diperoleh bahwa energi kalor yang terbuang sangat besar bila dibandingkan dengan energi yang dihasilkan oleh turbin, hal tersebut terlihat pada nilai efisiensi termal yang kecil pada kondisi 215°C yaitu sebesar 3,78%. Bila dibandingkan dengan kondisi superheater yang temperaturnya diatur pada 205°C dengan nilai efisiensi termal sistem sebesar 3,88%, maka nilainya 0,1% lebih besar dari pada kondisi pada saat temperatur superheater diatur pada 215°C. Hal ini menunjukkan bahwa pada beban yang sama yaitu 450 Watt dikedua kondisi tersebut, kenaikan temperatur dari 205oC menjadi 215oC menyebabkan menurunnya efisiensi termal dari sistem. Analisa hasil pengujian dengan diagram fase (h-s, p-h, dan T-s) pada titik pengaturan temperatur superheater 215oC diketahui bahwa kerugian kalor diantaranya dari losses yang terjadi pada saat pendistribusian uap, kalor yang dibuang untuk menkondensasikan uap, dan kalor yang terbuang karena percampuran air dan kondensat pada tangki kondensat. ......The research for this thesis uses miniature Steam powerplant was produced by the SNM (Shin Nippon Machinery) with TYPE 100-SCR. This power plant capable of producing electrical power of 450 Watts with maximum steam capacity of 130 kg / hour. This power plant was 10 year s do not operate, so many problems that occur and cause the equipment is unable to operate properly. Given this research, then some existing problems and then solved. Some of the action taken is to replace the distributor pipe and wir e netting on the cooling tower, install the cooling tower cover, condensate tank li ning hot deep way, theinstallation of the hose and water pipe connecting the outlet of the bearing cooling wi th cooling tower, compressor hose installation, installation of flow lines water and steam, installation code for measuring devices and valves. Losses in a power plant one of them is the utilization of heat energy that is still very small. To optimize the performance of the power plant will be tested by varying the exit temperature of the superheater to the electrical load. The point of superheater temperature setting are prescribed at 205°C and 215°C. This was done in order to know the characteristics of the powerplant. To obtain a condition where at a certain load then we can make arr angements at superheater exit temperature so that the overall power plant performance to be optimal. From two case studies have been done show that heat is wasted energy is very large when compared wi th the energy generated by the turbines, it is seen on the small value ofthermalefficiency thatis equal to 3,78%. When compared with the condition that its superheater temperature arranged in 205°C wi th a value system thermal efficiency of 3,88%, the value 0,1% greater than the conditions at the time of superheater temperature is set at 215°C. This shows that at the same load of 450 Watt in both conditions, the increase of temperature from 205°C to 215°C led to decrease the thermal efficiency ofthe system. The analysis of test results put emphasis on the analysis of energy and phase diagrams (h-s, p-h, dan T-s) at the set point temperature of superheater 215oC is known that such heat losses from the losses that occur when the distribution of steam, heat is removed to condense steam, and heat is wasted because of mi xing of water and condensate in the condensate tank.
Depok: Fakultas Teknik Universitas Indonesia, 2011
S985
UI - Skripsi Open  Universitas Indonesia Library
cover
Ibnu Roihan
Abstrak :
Pada data skripsi 2011, efisiensi termal PLTU, khususnya pada kondisi superheater 205 OC, hanya menunjukkan sekitar 3.8%. Dalam uji coba yang dilakukan di tahun 2013, jika dibandingkan dengan data 2011, heat loss yang terjadi di keluaran condenser menuju feed water tank dapat dikurangi hingga mencapai 66.66%, yang berarti adanya peningkatan usaha pengurangan pelepasan energi ke lingkungan sebesar 66.61% atau sekitar 100.46 [kJ/kg]. Tetapi hasil positif tersebut tidak sebanding dengan hasil pada keluaran superheater menuju turbin. Dibandingkan dengan data 2011, adanya penurunan energi sebesar 26 [kJ/kg] atau sebesar 33.46%. Sehingga efisiensi PLTU pada tahun 2013 turun menjadi 2.3%. Indikasi awal adalah adanya gejala fouling atau penumpukan kerak kotoran sisa pemanasan uap sehingga menyebabkan suhu uap turun sebesar hingga 25%, dari 205 OC menjadi 155 OC. ......In 2011 final project, thermal efficiency of steam power plant, especially with superheater temperature condition 205 OC, just indicate about 3.8%. In 2013 experiment, if compared with 2011 result, heat loss at out of condenser to feed water tank can decreased until 66.66%, there is upgrading for work decreasing energy loss to surroundings as big as 66.61% or 100.46 [kJ/kg]. But the positive result not comparable with the result out of superheater to turbine. As compared to 2011 result, there is decreasing energy as big as 26 [kJ/kg] or 33.46%. With the result that, thermal efficiency of steam power plant in 2013 decrease become 2.3%. First Indication is there is fouling in pipe distribution from superheater to turbine, until cause vapor temperature decrease as big as 25%, from 205 OC become 155 OC.
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46883
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Fawzi
Abstrak :
ABSTRAK
Energi listrik merupakan kebutuhan masyarakat. Seiring berjalannya waktu, kebutuhan listrik semakin meningkat. Heat Recovery Steam Generator HRSG merupakan salah satu alat yang sangat penting dalam PLTGU. Kegagalan atau kerusakan pada HRSG tentu menjadikan unit PLTGU tidak efektif dalam menghasilkan listrik. Pada Penelitian ini dengan menggunakan metode FMEA Failure Mode and Effect Analysis bertujuan untuk menentukan, mengklasifikasikan dan menganalisa mode kegagalan. Sebagai hasil dari perkalian S severity , O occurrence , dan D detection sehingga diperoleh RPN Risk Priority Number . Hasil FMEA diperoleh 10 mode kegagalan kritis dari 26 mode kegagalan yang terjadi. Urutan RPN tertinggi adalah 245 Pada Superheater dengan mode kegagalan : bocor pada tube , RPN 216 Pada economizer dengan mode kegagalan bocor pada tube , kemudian RPN 210 Pada Superheater dengan mode kegagalan : bocor pada U-Bend , dan tujuh kegagalan lainnya. Tindakan penanganan risiko dilakukan untuk kesepuluh mode kegagalan tersebut.
ABSTRAK
Nowadays, Electricity is an important needs people. By the time, people needs of electricity increasing. Heat Recovery Steam Generator HRSG has important role as a part of PLTGU stands for Integrated Gasification Combined Cycle Plants . HRSG rsquo s failures or damages surely impact on ineffectively electricity producing by PLTGU. This research, using Failure Mode and Effect Analysis FMEA , aims to determine, classify, and analyze failure modes. As the result of S Severity , O Occurrence , and D Detection multiplication, RPN Risk Priority Number would be achieved. FMEA result shows that 10 critical failure modes occurs from 26 failure modes. The highest RPN is 245 in Superheater with failure mode tube leakage , after that is RPN 216 in Economizer with failure mode tube leakage , then RPN 210 in Superheater with failure mode U Bend leakage , and the seven other failures. Risk Treatments are being held for the 10 failure modes.
2017
S67830
UI - Skripsi Membership  Universitas Indonesia Library