Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Aulia Pradipta Luthani
"Pada era informasi ini, komputer yang lebih baik dirancang untuk mengimbangi perkembangan teknologi. Seiring dengan komputer yang lebih baik dirancang, Central Processing Unit (CPU) dengan kekuatan lebih baik juga dibutuhkan. CPU mengeluarkan panas sesuai dengan kekuatan komputasinya, yang membutuhkan solusi pendingin yang lebih baik agar CPU berjalan pada suhu yang aman. Selain itu, trend pendingin berbasis air sebagai metode baru untuk mendingin CPU dikenalkan yang mempunyai kapabilitas yang lebih baik dibanding pendingin berbasis angin.
Penelitian ini juga memfokuskan kepada perkembangan pendingin berbasis air dengan cara menambahkan heat pipe. Penelitian ini menyelidiki pendingin berbasis air yang ditambahkan dengan heat pipe dalam hal thermal disipasinya. Kombinasi dari Pendingin berbasis air dan heat pipe menghasilkan hasil yang terburuk dibandingkan dengan pendingin komersil yang sudah dijual dipasaran. Kombinasi dengan heat pipe yang lebih pendek membuahkan hasil yang lebih baik, akan tetapi performanya yang dihasilkan tidak sebagus dengan pendingin komersil, baik yang berbasis angin dan air.

On this era of information, a better computer is built to cope with the rising of development of technology. As better computer is built, higher power of central processing unit is required. While better Central Processing Unit (CPU) produces higher heat, a better cooling solution is developed to cope with the higher generation of heat to keep components operates on the permissible temperature. The trend of liquid cooling as a new method is introduced for better cooling capability compared to air cooling counterpart. Furthermore, Personal Computer with liquid cooling has a tendency to produce less noise than personal computer with air cooling counterpart.
This study focuses on the development of addition of heat pipes with heat spreader on both ends to the liquid cooling unit which is a room for future development to the liquid cooling unit as a whole. This study compares the performance of liquid cooling with the addition unit in terms of thermal dissipation to the liquid cooling without one. The combination of water-cooling and long heat pipe is proven to be worst compared to the existing commercial cooling design, the combination of water-cooling and shorter heat pipe is proven to be second worst in terms of performance.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"The volumes includes selected and reviewed papers from the 2nd ETA Conference on Energy and Thermal Management, Air Conditioning and Waste Heat Recovery in Berlin, November 22-23, 2018. Experts from university, public authorities and industry discuss the latest technological developments and applications for energy efficiency. Main focus is on automotive industry, rail and aerospace."
Switzerland: Springer Cham, 2019
e20502872
eBooks  Universitas Indonesia Library
cover
Adi Winarta
"Metode pendinginan konvensional seperti heat sink dan fan sudah tidak efektif lagi menangani pelepasan kalor yang memiliki tren power density yang makin tinggi (fluks kalor tinggi). Peralatan transfer kalor dua fasa seperti pipa kalor (heat pipe) merupakan salah satu jenis pendingin yang sangat gencar dikembangkan diluar negeri akhir-akhir ini. Karena menghasilkan pendinginan yang efisien (passive cooling) sehingga merupakan salah satu kunci ketahanan produk terhadap umur pakai dan beban kerja yang tinggi. Permasalahan utama pada pengembangan teknologi pipa kalor konvensional adalah manufaktur sumbu kapiler (wick) yang kompleks dan merupakan komponen biaya terbesar produksi.
Studi mengenai pengembangan dan pengujian Pulsating Heat Pipe/Oscillating Heat Pipe (PHP/OHP) yang merupakan salah keterbaruan teknologi pipa sedang gencar dilakukan di luar negeri. Penelitian ini bertujuan ikut mempelajari manufaktur dan pengaplikasian pipa kalor jenis PHP/OHP sampai pada suatu prototipe aplikasi manajemen thermal. Pada tahap awal dipelajari desain dan manufaktur OHP secara umum meliputi proses manufaktur dan pengisian fluida kerja (vakum dan pengisian fluida dengan metode back-filling). Kemudian beberapa pengujian kinerja dilakukan untuk mendapatkan karakteristik thermalnya. Sampai pada akhirnya desain prototipe manajemen thermal yang mengaplikasikan PHP/OHP berhasil dibuat.
Uji pertama menggunakan metode thermography berhasil memberikan informasi secara kuantitatif terhadap proses-proses thermal yang terjadi. Adapun fenomena yang dapat diamati diantaranya proses sebaran kalor pada OHP dan lingkunganya pada saat start-up, beban kalor menengah dan beban kalor tinggi. Aliran kalor pada pipa kapiler saat terjadi osilasi slug flow dan sirkulasi. Pengujian berikutnya memberikan hasil bahwa masing-masing fluida memberikan karakteristik start-up, distribusi kalor yang berbeda. Hasil pengujian juga mendapatkan variasi inklinasi tidak memberikan perbedaan yang signifikan pada suatu kondisi tertentu. Pengujian visualisasi dengan metode neutron radiography juga dilakukan untuk mengamati gerakan fluida dan pengaruhnya pada transfer kalor.
Sebuah manajemen thermal motor listrik yang mengaplikasikan pulsating heat pipe sebagai pendingin juga telah berhasil dibuat dan diuji. Hasil pengujian menunjukkan kemampuan pulsating heat pipe menurunkan temperatur operasional motor listrik. Perbedaan temperatur luar dengan menggunakan variasi fluida kerja acetone yaitu 55,348°C, sementara untuk variasi fluida kerja methanol yaitu 56,071°C. Untuk perbedaan temperatur dalam yaitu 57,13°C dan 55,179°C, untuk variasi fluida kerja acetone dan methanol berturut-turut.

Conventional cooling methods such as heat sinks and fans are no longer effective in handling heat release which has a higher power density trend. Two-phase heat transfer equipment, such as heat pipes, are one type of cooling method that has been intensely developed abroad recently. Because it produces efficient cooling (passive cooling) so that it is one of the keys to product durability against service life and high workload. The main problem in the development of conventional heat pipe technology is the complex manufacturing of wick. And, it is also the largest component of production costs.
The study of the development and testing of Pulsating Heat Pipe/Oscillating Heat Pipe (PHP/ OHP) is one of the state of the art of heat pipe technology is being intensively investigate abroad. This study aims to learn about the manufacturing and application of PHP /OHP to a prototype thermal management application. In the early stages, OHP design and manufacturing were generally studied including manufacturing processes and filling of working fluids (vacuum and fluid charging with back-filling method). Then some performance test is performed to get the thermal characteristics. Finally the thermal management prototype design that applied PHP/OHP was successfully made.
The first test using the thermography method managed to provide quantitative information on the thermal processes that occur. The phenomena that can be observed include heat distribution process on OHP and its environment at start-up, medium heat load and high heat load. Heat flow in the capillary pipe when slug flow and circulation oscillations occur. Subsequent tests give results that each fluid provides start-up characteristics, a different heat distribution. The test results also get a variety of inclinations that do not give a significant difference in certain conditions. Visualization testing with neutron radiography methods was also carried out to observe fluid motion and its effect on heat transfer.
A thermal electric motor management that applies pulsating heat pipes as coolants has also been successfully made and tested. Test results show the ability of pulsating heat pipe to reduce the operational temperature of the electric motor. Outside temperature difference using a variation of acetone working fluid is 55,348oC, while for working fluid methanol variation is 56,071°C. For the difference in internal temperature is 57,13°C and 55,179°C, for variations in working fluid acetone and methanol respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2602
UI - Disertasi Membership  Universitas Indonesia Library
cover
Muhammad Raihan Gunawan
"Peningkatan signifikan emisi karbon telah mendorong pemerintah Indonesia untuk mempromosikan pemanfaatan energi baru terbarukan (EBT), termasuk mempercepat program kendaraan listrik. Motor listrik berfungsi sebagai komponen utama yang mengonversi energi listrik menjadi energi mekanik. Namun, proses konversi ini dapat menyebabkan peningkatan temperatur motor, yang berpotensi menurunkan performa dan memperpendek umur motor. Penelitian ini akan meneliti dan menguji Rotating Heat Pipe (RHP) sebagai sistem manajemen termal guna mencegah temperatur motor listrik melebihi 60℃. Pipa kalor yang digunakan dalam penelitian ini memiliki diameter 10mm dan panjang 500mm, serta terbuat dari tembaga. Fluida kerja yang digunakan adalah air dan nanofluida (Al2O3-Air). Distribusi temperatur sepanjang RHP diukur dan dicatat menggunakan termokopel yang dihubungkan ke modul akuisisi melalui slip ring. Parameter fill ratio dan tekanan fluida kerja dioptimalkan untuk mencapai kinerja pendinginan yang optimal. Pipa kalor pada kondisi diam dengan filling ratio 50% menunjukkan hasil kinerja yang baik berdasarkan resistansi termal sebesar 0,09 K/W.

The significant increase in carbon emissions has prompted the Indonesian government to promote the utilization of renewable energy, including accelerating the electric vehicle program. In vehicles, the electric motor serves as a primary component that converts electrical energy into mechanical energy. However, this conversion process can cause an increase in motor temperature, potentially reducing performance and shortening motor lifespan. This study will investigate and test the Rotating Heat Pipe (RHP) as a thermal management system to prevent the electric motor temperature from exceeding 60℃. The heat pipe used in this study has a diameter of 10mm and a length of 500mm, and is made of copper. The working fluids used for this study are water and nanofluid (Al2O3-Water). The temperature distribution alaong the RHP is measured and recorded using thermocouples connected to an acquisition module via a slip ring. The fill ratio and working fluid pressure parameters are optimized to achieve optimal cooling performance. The stationary heat pipe with a 50% fill ratio demonstrated good performance, with a thermal resistance of 0.09 K/W."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zaki
"Peningkatan jumlah emisi karbon mendorong pemerintah Indonesia untuk menetapkan target bebas gas rumah kaca pada tahun 2060 dan membuat kebijakan penggunaan kendaraan listrik guna mendukung tercapainya target tersebut. Pada kendaraan listrik, baterai lithium-ion (Li-ion) berfungsi sebagai sumber tenaga utama. Namun, dalam proses penyimpanan dan penggunaan energi, baterai ini menghasilkan panas yang dapat menyebabkan suhu operasi melebihi 60℃, yang berpotensi menurunkan performa dan menyebabkan kerusakan. Oleh karena itu, diperlukan sistem manajemen termal yang efektif untuk menjaga suhu baterai dalam batas aman. Penelitian ini meneliti dan menguji Flat Loop Heat Pipe (FLHP) dengan fluida kerja air sebagai sistem pendinginan pasif untuk baterai ganda pada kendaraan listrik. Tujuan dari penelitian ini adalah untuk mengembangkan metode pengukuran kinerja FLHP dan mengetahui efisiensinya dalam manajemen termal baterai. Penelitian ini menggunakan FLHP dengan variasi rasio pengisian fluida, suhu pendingin, dan laju aliran pendingin pada kondensor. Dari penelitian ini, diketahui bahwa rasio pengisian optimal adalah 60%, yang memberikan performa termal terbaik dengan menjaga suhu operasi baterai pada kondisi ideal. Suhu pendingin optimal ditemukan pada 25°C dengan laju aliran pendingin optimal sebesar 1,5 liter per menit. Kombinasi ini memberikan efisiensi pendinginan terbaik, menjaga suhu baterai dalam batas aman, dan meningkatkan keselamatan serta kinerja baterai pada kendaraan listrik.

The increase in carbon emissions has prompted the Indonesian government to set a target of zero greenhouse gas emissions by 2060 and implement policies to promote the use of electric vehicles (EVs) to support this goal. In EVs, lithium-ion (Li-ion) batteries serve as the primary power source. However, during energy storage and usage, these batteries generate heat that can cause the operating temperature to exceed 60°C, potentially decreasing performance and causing damage. Therefore, an effective thermal management system is required to keep the battery temperature within safe limits. This study examines and tests a Flat Loop Heat Pipe (FLHP) with water as the working fluid as a passive cooling system for dual batteries in electric vehicles. The objective of this research is to develop a performance measurement method for FLHP and evaluate its efficiency in thermal management of the batteries. The study uses FLHP with variations in filling ratio, coolant temperature, and coolant flow rate at the condenser. The results indicate that the optimal filling ratio is 60%, providing the best thermal performance by maintaining the battery's operating temperature within the ideal range. The optimal coolant temperature was found to be 25°C with an optimal coolant flow rate of 1.5 liters per minute. This combination offers the best cooling efficiency, keeping the battery temperature within safe limits and enhancing the safety and performance of the batteries in electric vehicles."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Ariantara
"ABSTRAK
Pembangkitan kalor pada baterai dan motor listrik akan meningkatkan temperatur kerjanya. Temperatur kerja yang terlalu tinggi dapat menurunkan kinerja dan memperpendek umur pakai baterai dan motor listrik. Kemajuan teknologi baterai telah menghasilkan baterai-baterai Li-Ion berdensitas energi sangat tinggi. Namun demikian, kemajuan ini disertai dengan resiko terjadinya thermal runaway yang dapat menyebabkan terjadinya kecelakaan serius seperti yang dialami oleh pesawat Boeing 787 Dreamliner di Jepang pada 16 Januari 2017. Untuk operasi kendaraan listrik yang aman, dengan kinerja yang tinggi serta umur pakai yang panjang diperlukan sistem manajemen termal SMT yang handal dengan bobot ringan, ukuran yang ringkas dan hemat energi. Pipa kalor merupakan perangkat termal yang memiliki kapasitas perpindahan kalor per satuan luas yang tinggi, berbobot ringan, berukuran ringkas dan tidak memerlukan pasokan daya eksternal. Pada penelitian ini dilakukan pengembangan prototipe SMT baterai dan motor kendaraan listrik berbasis pipa kalor serta pengembangan fabrikasi lotus-type porous copper LTP Copper untuk diterapkan sebagai sumbu kapiler pipa kalor. Prototipe SMT baterai dibuat mengunakan simulator baterai dengan menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya disisipkan di antara permukaan simulator baterai dan bagian kondensernya didinginkan dengan udara sekeliling. Prototipe SMT motor listrik menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya ditempatkan di bagian luar rumah motor dan bagian evaporatornya di depan kipas. Pada kedua prototip tersebut, pembangkitan kalor disimulasikan dengan pemanas listrik yang dayanya diatur melalui regulator tegangan. Kinerja prototip sistem manajemen termal baterai dan motor kendaraan listrik tersebut ditentukan secara eksperimental. LTP Copper difabrikasi menggunakan teknik slip casting dan sintering menggantikan proses Gasar. Struktur pori memanjang diperoleh dengan menggunakan pore former benang nilon. Parameter proses dioptimasi untuk mendapatkan permeabilitas dan laju pemompaan kapiler terbaik. SMT baterai berhasil menurunkan temperatur simulator baterai dari 71 C menjadi 50 C pada beban kalor 60 W. SMT motor listrik berhasil menurunkan temperatur permukaan motor dari 102.2 C menjadi 68.4 C pada beban kalor 150 W. LTP Copper berhasil dibuat dengan teknik slip casting dan sintering dan diterapkan sebagai sumbu kapiler pipa kalor melingkar. Pipa kalor melingkar tersebut dapat beroperasi pada rentang beban kalor yang lebar, yaitu 16 W hingga 160 W dan tahanan termal minimum 0,126 C/W pada beban kalor 148.6 W.

ABSTRACT
Heat generation in batteries and electric motors will increase the working temperature. Excessive working temperatures will degrade performance and shorten the life span. Advances in battery technology have resulted in a very high energy density Li Ion batteries. However, these advances are accompanied by the risk of thermal runaway that could lead to a serious accidents such as those experienced by a Boeing 787 Dreamliner aircraft in Japan on January 16, 2013. A safe operation with high performance and long service life requires a reliable thermal management system TMS with light weight, compact size, and low energy consumption. Heat pipes are thermal devices with a high heat transfer capacity per unit area, lightweight, compact size and requires no external power supply. This research develops the prototype of heat pipe based TMS of electric vehicle battery and motor and the fabrication of lotus type porous copper LTP Copper to be applied as heat pipe capillary wick. The prototype of the battery TMS was made using a battery simulator by applying L shaped flat heat pipes whose evaporator portion is inserted between the battery s simulator surfaces and the condenser portion cooled with ambient air. The prototype of the electric motor TMS also applied L shaped flat heat pipes whose evaporator section is placed on the outer surface and the condenser portion in front of the fan. In both prototypes, the heat generation is simulated with electric heaters whose power is regulated through a voltage regulator. The performance of the battery and motor TMS are determined experimentally. LTP Copper was fabricated using the slip casting and sintering techniques to replace a very complicated and costly Gasar process. Unidirectional pore structure is obtained by using nylon thread pore former. Process parameters consisting of copper powder diameter, pore former diameter, sintering temperature and holding time are optimized to obtain the best permeability and capillary pump rate. The battery TMS has successfully reduced the battery simulator temperature from 71 C to 50 C at 60 W heat load. The motor TMS has successfully reduced the surface temperature of the motor from 102.2 C to 68.4 C at 150 W heat load. LTP Copper with high permeability and capillary pumping rate was successfully made by slip casting and sintering technique and applied as a loop heat pipe capillary wick. The loop heat pipe could operate in a wide heat load range, which is 16 W to 160 W and a minimum thermal resistance of 0.126 C W at a 148.6 W heat load."
2017
D2296
UI - Disertasi Membership  Universitas Indonesia Library