Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5 dokumen yang sesuai dengan query
cover
Pelawi, Laily Fitri
""ABSTRAK
"
Amonia NH3 adalah senyawa kimia yang penting dalam kehidupan modern ini. Dari sekitar 100 tahun lalu sampai saat ini produksi amonia masih diproduksi dengan proses Haber-Bosch menggunakan H2 dan N2 di bawahpada tekanan dan suhu yang sangat tinggi. Metode produksi NH3 dengan fotokatalitik dari air dan N2 pada tekanan atmosfer dan suhu ruang adalah hal yang akan diteliti. Beberapa fotokatalis semikonduktor telah diusulkan, tapi terkendala mengenai efisiensinya yang rendah. Dalam penelitian ini akan dipreparasi TiO2 nanotube dengan sejumlah kekosongan oksigen pada permukaan atau Ti3 surface defects dengan metode reduksi elektrokimia. TiO2-NT difabrikasi melalui anodisasi dari plat Ti selama 45 menit pada 40 V, lalu diannealing selama 2 jam pada 450oC untuk membentuk kristal anatase. Sistem fotokatalitik dengan Ti3 /TiO2-NT yang ketika difotoirradiasi dengan sinar UV dalam air murni dengan bubbling N2 diharapkan dapat menghasilkan gas NH3. Sisi aktif untuk reduksi N2 adalah spesi Ti3 terdapat di sisi-sisi oksigen yang kosong. Spesi ini bertindak sebagai tempat adsorpsi N2. Sifat-sifat ini yang menyebabkan kenaikan kemampuan reduksi N2 menjadi NH3. Konversi energi cahaya menjadi energi kimia didapat dengan efisiensi sebesar 0.0181
"
"
"ABSTRACT
"
Ammonia NH3 is an important chemical compound in modern life. Since 100 years ago until now, ammonia is still produced by Haber Bosch method from N2 and H2 in very high pressure and temperature. NH3 production by photocatalytic water and N2 in atmosphere pressure and room temperature will be investigated later. Some semiconductor photocatalysts had been proposed but still had a problem about the low efficiency. In this research, TiO2 nanotube is fabricated with some oxygen vacancies or Ti3 surface defect Ti3 TiO2 NT by electrochemical method. TiO2 NT is fabricated by anodization from Ti foil for 45 minutes at 40 V, then annealing for 2 hours at 450oC to form anatase crystals. Photocatalytic system with Ti3 TiO2 NT when photoirradiated by UV light with water and N2 bubbling is expected to produce NH3. The active site for N2 reduction is Ti3 species on the oxygen vacancies. These species act as adsorption sites for N2 and trapping sites for the photoformed conduction band electrons. These properties therefore promote e cient reduction of N2 to NH3. The solar to chemical energy conversion e ciency is 0.0181 "
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bertha Venturya Wihelmina
"Amonia merupakan bahan kimia yang penting dan banyak digunakan dalam berbagai proses industri kimia. Amonia diproduksi dalam skala industri melalui proses Haber-Bosch. Dalam proses tersebut gas H2 dan N2.direaksikan pada suhu dan tekanan tinggi, serta menggunakan hidrokarbon dari minyak bumi sebagai sumber protonnya. Dalam penelitian ini, sintesis NH3 dilakukan secara fotokatalitik, dalam tekanan dan suhu ruang, menggunakan gas nitrogen dan sumber proton dari air. Pada penelitian sebelumnya digunakan fotokatalis TiO2 yang diperkaya dengan spesi Ti3+ yang disiapkan secara elektrokimia. Pada penelitian ini dilakukan pengembangan matrik sistem Ti3+ TiO2 nanotube, dengan upaya meningkatkan populasi spesi Ti3+9 dan menedekorasinya dengan nano partikel emas. Sistem fotokatalis Au/Ti3+/TiO2NT yang dihasilkan saat direndam dalam larutan 0,1 M Na2SO4 dan dialiri gas N2, serta disinari dengan sinar tampak menghasilkan NH3, dengan konversi sinar ke produk ammonia sebesar 0.026%.
......Ammonia (NH3) is an important chemical and is widely used in various industrial processes. Ammonia production in an industrial scale is conducted through the Haber-Bosch process, where in this process H2 and N2 gases are reacted in a high temperatures and pressures. In addition, in that process the hydrocarbon was used as proton precursor. In this research, the photocatalytic method of producing NH3 from water, as proton source, and N2 at atmospheric pressure and room temperature is being investigated. In the previous study, it was reported that a specific enriched TiO2 semiconductor material with Ti3 + showed its potential to photocatalytically conver nitrogen to ammonia, under UV irradiation. In this study, the photocatalyst matrix was improved by increasing the Ti3 + species population and decorating with gold nanoparticle. The resulted photocatalyst system, namely Au / Ti3 + / TiO2-NT, then was immersed in 0.1M of Na2SO4 solution, under N2 bubbling, and exposed by visible light, and consistently ammonia productions were observed. In the present condition an efficientcy of solar to ammonia production was approximately 0.026% ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bertha Venturya Wihelmina
"ABSTRAK
Amonia (NH3) merupakan bahan kimia penting dan banyak digunakan dalam berbagai proses industri kimia. Amoniak diproduksi dalam skala industri melalui proses Haber-Bosch. Dalam prosesnya, gas H2 dan N2 direaksikan pada suhu dan tekanan tinggi, dan menggunakan hidrokarbon dari minyak bumi sebagai sumber proton. Pada penelitian ini, sintesis NH3 dilakukan secara fotokatalitik, pada suhu dan tekanan kamar, menggunakan gas nitrogen dan sumber proton dari air. Pada penelitian sebelumnya, fotokatalis TiO2 yang diperkaya dengan spesies Ti3+ digunakan secara elektrokimia. Pada penelitian ini dilakukan pengembangan matriks sistem nanotube Ti3+-TiO2, dengan upaya meningkatkan populasi spesies Ti3+, dan menghiasinya dengan nanopartikel emas. Sistem fotokatalis Au/Ti3+/TiO2-NT dihasilkan ketika direndam dalam larutan Na2SO4 0,1 M dan dialirkan dengan gas N2, dan disinari dengan cahaya tampak menghasilkan NH3, dengan konversi cahaya menjadi produk amonia sebesar 0,026%.
ABSTRACT
Ammonia (NH3) is an important chemical and is widely used in various chemical industrial processes. Ammonia is produced on an industrial scale through the Haber-Bosch process. In the process, H2 and N2 gases are reacted at high temperature and pressure, and use hydrocarbons from petroleum as a proton source. In this study, the synthesis of NH3 was carried out photocatalytically, at room temperature and pressure, using nitrogen gas and a proton source from water. In a previous study, TiO2 photocatalyst enriched with Ti3+ species was used electrochemically. In this study, a matrix of Ti3+-TiO2 nanotube systems was developed, with an effort to increase the population of Ti3+ species, and decorate it with gold nanoparticles. The Au/Ti3+/TiO2-NT photocatalyst system was produced when immersed in 0.1 M Na2SO4 solution and flowed with N2 gas, and irradiated with visible light to produce NH3, with a conversion of light to ammonia product of 0.026%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fardha Abidillah
"Amonia merupakan senyawa kimia yang banyak digunakan dalam kehidupan. Produksi amonia yang sering digunakan adalah proses Haber-Bosch yang menghasilkan emisi CO2 yang besar dan harus dilakukan pada suhu dan tekanan ekstrim. Produksi NH3 air dan N2 secara fotokatalisis dapat dilakukan pada temperatur dan tekanan ruang sehingga menjadikan produksi ini sangat ideal. Namun metode ini masih memiliki efisiensi yang relatif rendah.
Dalam penelitian ini dilakukan proses konversi nitrogen menjadi ammonia tandem sel surya, Quantum Dot Sensitized Solar Cell (QDSSC), dengan sel fotoelektrokimia sebagai zona katalisis. Fotoanoda dalam sel surya menggunakan  TiO2 nanotube yang disensitasi dengan CdS, sedangkan sel fotoelektrokimia pada zona katalisis menggunakan pasangan electrode Ti3+/TiO2 nanotube yang diletakan dalam dua kompartemen terpisah. Tandem sel yang dikembangkan berhasil mengkonversi N2 menjadi NH3, dengan menggunakan sumber hidrogen dari air dan input energi dari sinar tampak, denga rata-rata efisinesi konversi berkisar antara 0,03-0,098%.
......Ammonia is an essential substance in human lives. The most common method in ammonia production in industries is the Haber-Bosch method, this method using high temperature and pressure also produce CO2 emissions as sideproduct. NH3 can be produced by water and N2 through a photolytic reaction using room temperature and atmospheric pressure which made this reaction is ideal for ammonia production. But this method has low efficiency of production.
This research purpose is to produce ammonia through photocatalytic reaction of nitrogen reduction using modified Quantum Dot Sensitized Solar Cell (QDSSC) in TiO2 nanotube, through separation of an anodic catalytic zone and cathodic zone. TiO2 nanotube sensitized by CdS and illuminated by visible light to produce electron which can be transferred to catalytic zone for nitrogen reduction. The solar cell that has been made succeeded in convert N2 to NH3, using water as H2 source and visible light as an energy source, with average conversion efficiency 0,03-0,098 %."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Okta Lian Atikah
"Amonia NH3 merupakan bahan kimia yang penting dalam industri kimia. Dewasa ini, telah dikembangkan suatu metoda baru dalam produksi amonia melalui reaksi fotokatalitik menggunakan matrik TiO2 yang memiliki populasi kekosongan oksigen, menghasilkan spesi Ti3 matrik [Ti3 -TiO2] yang sesuai. Konversi N2 menjadi amonia tersebut, menggunakan sumber hidrogen dari air, berlangsung pada kondisi tekanan dan suhu ruang. Namun, dalam sistem tersebut penyerapan foton dan konversi kimia terjadi pada locus yang sama, sehingga kadang terjadi kontradiksi saat dilakukan optimasi penyerapan foton dan konversi kimiawinya. Dalam penelitian ini, dilakukan pendekatan baru dimana locus penyerapan foton dan inisiasi reaksi kimia dilakukan pada locus yang berbeda. Untuk keperluan tersebut, dilakukan modifikasi sel surya tipe Gratzel Dyse Sensitized Solar Cell, DSSC, sehingga memiliki kepanjangan zona katalisis yang terpisah dari zona DSSC nya. Penyerapan cahaya dilakukan pada zona DSSC dan konversi N2 menjadi amonia dilakukan pada zona katalisis. Zona DSSC menggunakan foto anoda TiO2 yang disensitasi dengan zat warna ruthenium dye jenis N719, sedangkan zona katalisis menggunakan matrik [Ti3 -TiO2 nanotube]. Preparasi TiO2 nanotube dan matrik [Ti3 -TiO2 nanotube] berturut turut menggunakan metode anodisasi dan reduksi elektrokimia. Sensitasi TiO2 dengan zat warna N719 dilakukan dengan cara perendaman dan dilakukan variasi waktu perendaman selama 3; 6; 12; dan 24 jam. Hasil preparasi dilakukan karakterisasi yang sesuai, diantaranya menggunakan XRD, SEM, UV-Vis DRS, FT-IR, dan dilakukan uji photocurrent menggunakan sel fotoelektrokimia. Perakitan sel surya yang dimodifikasi, dilakukan menggunakan foto anoda TiO2 nanotube tersensitasi N719, elektrolit I3-/I- dan Pt/FTO sebagai elektroda counter pada zona DSSC. Sedangkan, pada zona katalis digunakan matrik [Ti3 -TiO2 nanotube], elektrolit Na2SO4, TiO2 sebagai elektroda counter. Zona katalis pada rangkaian tersebut dialiri gas N2, sementara zona DSSC disinari. Dilakukan variasi waktu dan pH pada fotoreaksi produksi amonia. Hasilnya menunjukkan bahwa pada rentang reaksi antara 12 jam s/d 100 jam secara konsisten diperoleh produk amonia 13,39 M s/d 137 M dan diperoleh efisiensi konversi sebesar 0,06. Hasil yang diperoleh dalam penelitian ini memberi konfirmasi keberhasilan dari pendekatan yang dilakukan.
......Amonia NH3 is an important precursor in the chemical industry. Recently, a new method of producing amonia has been developed by photocatalytic reaction over TiO2 with partially oxygen vacancied, yielding Ti3 species, from water and N2 under basically ambient pressure and temperature. Unfortunately, the reaction locus is taken place in the same place with the illumination locus, which may create a contradictory during optimation of light absorbing locus and intended chemical reaction locus. Thus in this study, a relatively new approach is introduced. The production of amonia will be performed by using modified DSSC device, which has a catalysis zone extension. Hence the photon absorption is provided by DSSC zone, then the produced, what so called, ldquo hot rdquo electron transferred to catalysis zone to intiate intended chemical reaction. In this work, N719 type dyes was used as sentizer for the photoande in DSSC zone, while the catalysis zone employing Ti3 TiO2nanotubes matrix. Preparation of TiO2 was done by using anodization method, while preparation of the Ti3 TiO2 nanotube catalyst zone was carried out by electrochemical reduction method of prepared TiO2. TiO2 was then sensitized by N719 by immersion method. Variation of immersion was performed for 3 6 12 and 12 hours. Both then was characterized by XRD, SEM, UV Vis DRS, and FT IR and electyrochemical work station. Modified DSSC was prepared by using TiO2 NT N719 dye as working electrode, I3 I electrolyte and Pt FTO as counter electrodes for the DSSC zone and Ti3 TiO2 nanotube coupled with TiO2 as counter electrode in catalysis zone. The catalysis zone then was immersed into Na2SO40.1 M electrolyte, which then aerated by N2 gas. while the DSSC zone is irradiated, then within a certain period of amonia products are obtained. The amonia product was collected and analyzed using phenate method. Variations of time and pH of photoreaction for amonia production was performed. The results showed that in the reaction range between 12 hours to 100 hours consistently obtained amonia products 13.39 M up to 137 M which indicated a conversion efficiency of 0.06 . The results obtained in this study confirm the potential or success of the approach."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library